Research Article

[Retracted] Predicting the Spread of Vessels in Initial Stage Cervical Cancer through Radiomics Strategy Based on Deep Learning Approach

Table 1

A selected patient training and testing phase attributes.

Patients characteristicsTraining phase N = 150-valueTesting phase N = 55-value-value
+ive lymphovascular invasion-ive lymphovascular invasion+ive lymphovascular invasion-ive lymphovascular invasion

Patients age/year0.600.530.98
Average age55565360
Age ranges27–5527–6030–5535–65
Stages0.62<0.00020.45
Early stage IB20 (50.2)40 (52.6)15 (30.4)35 (70.2)
Late stage IB15 (42.5)48 (50.1)18 (40.2)20 (40.2)
Stage IIB8 (18.5)12 (13.2)12 (52.6)8 (10.2)
MRI lymph node status<.0020.0020.70
Positive20 (7.9)30 (40.2)10 (55.2)50 (92.1)
Negative150 (95.7)52 (68.2)12 (60.8)15 (20.5)
Menstrual status0.5420.4420.89
Postmenopausal15 (40.3)55 (56.2)6 (30.2)30 (52.7)
Premenopausal28 (65.2)48 (50.2)15 (80.5)35 (56.8)
Maximum cancer diameter0.0020.0080.55
≤5 cm25 (60.2)80 (88.5)8 (52.8)42 (68.5)
>5 cm20 (45.6)18 (17.06)10 (54.8)9 (15.9)
Lymphovascular invasion<.002.001<.002
Positive88 (35.9)46 (59.8)18 (22.6)15 (35.9)
Negative170 (59.8)35 (40.8)97 (89.0)28 (70.2)