Research Article
[Retracted] Predicting the Spread of Vessels in Initial Stage Cervical Cancer through Radiomics Strategy Based on Deep Learning Approach
Table 2
Various CNN model performance evaluation [Ac = Accuracy; Sn = Sensitivity; Sp = Specificity].
| Various methods | ROC curve | Ac | Sn | Sp |
| AdaptiveVGG19 X1DCE | 0.79 | 0.75 | 0.65 | 0.78 | AdaptiveVGG16 X1DCE | 0.82 | 0.68 | 0.74 | 0.75 | AdaptiveInceptionV3/X1DCE | 0.78 | 0.81 | 0.85 | 0.65 | AdaptiveVGG16/X2WI | 0.85 | 0.68 | 0.88 | 0.60 | AdaptiveResNet50-V2/X1DCE | 0.89 | 0.78 | 0.68 | 0.87 | AdaptiveInceptionV3/X2WI | 0.92 | 0.69 | 0.66 | 0.88 | AdaptiveResNet50-V2/X2WI | 0.88 | 0.80 | 0.70 | 0.92 | AdaptiveDenseNet121/X2WI | 0.87 | 0.88 | 0.72 | 0.77 | AdaptiveDenseNet121/X1DCE | 0.92 | 0.77 | 0.87 | 0.84 | AdaptiveVGG19-SE/X2WI | 0.89 | 0.85 | 0.79 | 0.82 | AdaptiveVGG19-SE/X1DCE | 0.94 | 0.89 | 0.88 | 0.88 | AdaptiveVGG19-CBAM/X2WI | 0.85 | 0.91 | 0.82 | 0.89 | AdaptiveVGG19-CBAM/X1DCE | 0.90 | 0.87 | 0.79 | 0.88 | Proposed A-EL/X1DCE + X2WI | 0.95 | 0.96 | 0.91 | 0.94 |
|
|