Research Article
Using an Artificial Neural Network to Validate and Predict the Physical Properties of Self-Compacting Concrete
Table 2
Training dataset for ANN2-RHA replacement.
| | 
 |  | PPC (%) | RHA (%) | SC | IST (min) | FST (min) | CS-28 days (N/mm2) |  | 
 |  | 96 | 4 | 0.39 | 93 | 234 | 31.56 |  | 96 | 4 | 0.38 | 95 | 239 | 31.02 |  | 96 | 4 | 0.42 | 86 | 247 | 30.67 |  | 96 | 4 | 0.4 | 88 | 244 | 31.97 |  | 96 | 4 | 0.39 | 87 | 235 | 30.80 |  | 92 | 8 | 0.42 | 113 | 410 | 30.35 |  | 92 | 8 | 0.39 | 110 | 415 | 30.21 |  | 92 | 8 | 0.39 | 102 | 412 | 29.67 |  | 92 | 8 | 0.42 | 105 | 419 | 31.00 |  | 92 | 8 | 0.42 | 103 | 406 | 29.36 |  | 88 | 12 | 0.4 | 253 | 739 | 25.87 |  | 88 | 12 | 0.37 | 257 | 729 | 26.94 |  | 88 | 12 | 0.41 | 254 | 730 | 26.21 |  | 88 | 12 | 0.41 | 248 | 731 | 25.64 |  | 88 | 12 | 0.39 | 243 | 729 | 26.83 |  | 84 | 16 | 0.39 | 328 | 934 | 21.30 |  | 84 | 16 | 0.42 | 335 | 933 | 22.30 |  | 84 | 16 | 0.41 | 339 | 924 | 21.60 |  | 84 | 16 | 0.39 | 324 | 941 | 20.60 |  | 84 | 16 | 0.42 | 320 | 928 | 21.80 |  | 80 | 20 | 0.43 | 395 | 993 | 21.65 |  | 80 | 20 | 0.45 | 396 | 987 | 21.13 |  | 80 | 20 | 0.44 | 385 | 989 | 20.34 |  | 80 | 20 | 0.46 | 386 | 994 | 20.81 |  | 80 | 20 | 0.41 | 393 | 997 | 21.23 |  | 
 | 
 |