Review Article
Credit Scoring: A Review on Support Vector Machines and Metaheuristic Approaches
Table 9
Results categorized with data splitting methods.
| | Data Split | Authors | G | A |
| | k-fold cv | Dong et al. [66] | 72.90 | - | | | Uthayakumar et al. [69] | - | 86.37 | | | Zhang et al. [38] | 79.88 | 89.45 | | | Xu et al. [40] | - | 89.28 | | | Han et al. [50] | 75.00 | - | | | Zhang et al. [78] | 77.76 | 89.33 | | | Yao [39] | 76.60 | 87.52 | | | Chen and Li [43] | 76.70 | 86.52 | | | Jadhav et al. [54] | 82.80 | 90.75 | | | Wang et al. [55] | 78.53 | 86.96 | | | Huang and Wu [83] | - | 87.54 | | | Oreski and Oreski [86] | 78.90 | - | | | Wang et al. [88] | - | 88.90 | | | Zhou et al. [42] | 77.10 | 86.96 | | | Yu et al. [44] | 78.46 | 90.63 | | | Hsu et al. [53] | 84.00 | 92.75 | | | Huang et al. [35] | 77.92 | 86.90 | | | mean | 78.20 | 88.56 | | | standard deviation | 2.93 | 1.92 |
| | holdout | Baesens et al. [8] | 74.30 | 89.10 | | | Cai et al. [63] | 80.00 | - | | | Boughaci and Alkhawaldeh [18] | 69.90 | 80.70 | | | Harris [29] | 77.10 | - | | | Zhou et al. [56] | 78.13 | - | | | Ghodselahi [57] | 81.42 | - | | | Martens et al. [36] | - | 85.10 | | | Martens et al. [67] | 80.80 | - | | | Aliehyaei and Khan [71] | 70.70 | 84.30 | | | Garsva and Danenas [51] | 81.30 | 87.40 | | | mean | 77.07 | 85.32 | | | standard deviation | 4.47 | 3.20 |
| | rep k-fold | Lessmann et al. [11] | 75.30 | 86.00 | | | Xia et al. [59] | 78.32 | 86.29 | | | Krishnaveni et al. [90] | 80.40 | 93.50 | | | mean | 78.01 | 88.60 | | | standard deviation | 2.56 | 4.25 |
| | rep holdout | Ong et al. [61] | 77.34 | 88.27 | | | Huang et al. [64] | 79.49 | 89.17 | | | Lacerda et al. [75] | - | 86.05 | | | mean | 78.42 | 87.83 | | | standard deviation | 1.52 | 1.61 |
|
|