Review Article

A Review of the Modeling of Adsorption of Organic and Inorganic Pollutants from Water Using Artificial Neural Networks

Table 2

Summary of the ANN modeling of the multicomponent adsorption of water pollutants at batch operating conditions.

AdsorbentAdsorbateANN modelExperimentData used (Training-Testing-Validation)Input variablesOutput variablePollutants removalReference

Chitosan-based hybrid hydrogelsAcid blue, allura redLevenberg-Marquardt back propagation (5-10-10-10-2)Binary kinetics221-47-47C01, C02, carbon content, porosity, tAdsorption capacityAB 242.5 mg/g, AR 219.35 mg/g[7]
Ultrasound-modified chitinCo2+, Ni2+, methylene blueLevenberg-Marquardt, Bayesian regulation and back propagation with gradient derivativesIsotherms140-30-30C0, TAdsorption capacityCo2+ 62.34 mg/g, Ni2+ 52.53 mg/g, methylene blue 11.30 mg/g[27]
Bone charCd2+, Ni2+, Zn2+, Cu2+Multi-layer feed forward (4-(10-20)-(5-10)-4)Multi-component isotherms99-28-14C0Adsorption capacityCd2+ 1.62 mmol/g, Ni2+ 1.35 mmol/g, Zn2+ 0.90 mmol/g, Cu2+ 1 mmol/g[28]
Activated carbonsAcid orange, acid blue, caffeine, acetaminophen, benzotriazoleHybrid ANN - homogeneous surface diffusion modelBinary and ternary kinetics90-5-5Type of adsorbent, pH, T, C0, ratio m/VRemoval percentageAO 65%, AB74 85%, ACT 64%, CAF 82%, BTA 78%[29]
Activated carbonNimesulide, paracetamolBayesian regularization back propagation algorithmIsotherms85-0-15Ps, m, t, C0Adsorption capacityNimesulide 0.22 mmol/g, paracetamol 0.16 mmol/g[30]
Activated carbon from kiwi peel, cucumber peel and potato peelMethylene blue, malachite green, rhodamine BThree-layered feed forward (3-7-1)Single, binary and ternary equilibrium184-40-40pH, t, T, m, C0Adsorption capacityMB 400 mg/g[46]
Activated carbonHerbicides 2,4-D and 4-chloro-2-methylphenoxyacetic acidMulti-layer perceptronBinary isotherms21-0-9CeAdsorption capacityD 0.48 mmol/g, M 0.54 mmol/g[48]
Graphite oxide nano particleMethylene blue, brilliant greenPrincipal component analysis - three layered feed forward Levenberg–Marquardt back-propagation (4-4-1)Binary equilibrium100-40-0Ce in mixtureCeMB 410 mg/g, BG 129.41 mg/g[43]
Granulated activated carbonNitrobenzene, phenol, anilineThree-layered feed forward Levenberg-Marquardt back propagation (3-1-1)Ternary equilibrium40-41-0Ce1, Ce2, Ce3Adsorption capacityNI 0.39 mmol/g, AN 0.4 mmol/g, PH 0.32 mmol/g[147]
Mixture of bentonite, zeolite, biochar, cockleshell, cementAtenolol, ciprofloxacin, diazepanThree-layered feed forward Levenberg-Marquardt back propagation (2-5-1)Multicomponent equilibrium, RSM45-15-15t, C0Removal percentageATN 90.2%, CIP 94%, DIA 95.5%[286]
Microbioal biosorbentCu2+-Cd2+Feed forward back propagation (3-10-2)Binary isotherms16-17-17C0, pHAdsorption capacityCu2+ 9.75 mg/g, Cd2+ 4.48 mg/g[110]
MnO2-loaded activatedBrilliant green, crystal violet, methylene blueThree-layered feed forward Levenberg Marquardt back-propagation (6-12-3)Ternary equilibrium, RSM (CCD)62-14-14m, t, C0, CeRemoval percentage of each dyeBG 206 mg/g, CV 234 mg/g, MB 263 mg/g[126]
Magnetic ɤ-Fe2O3-loaded activated carbonMethylene blue, malachite greenFeed forward Levenberg-Marquardt back propagation (5-11-2)Binary equilibrium, RSM (CCD)36-7-7pH, m, t, C01, C02Removal percentage of each dyeMB 195.55 mg/g, MG 207.04 mg/g[130]
Mn@CuS/ZnS nanocomposite-loaded activated carbonMethylene blue, malachite greenRadial basis function neural network with Kernel stone algorithmBinary, RSM (CCD)22-10-0pH, m, t, C01, C02Removal percentage of each dyeMB 126.42 mg/g, MG 115.08 mg/g[136]
SnO2 nanoparticles loaded on activated carbonSunset yellow, disulfine blueThree-layered feed forward back propagation (5-11-2)Binary equilibrium, RSM (CCD)26 datapH, m, t, C01, C02Removal percentageSY 83.34 mg/g, DB 94.94 mg/g[143]
CuO nanoparticles supported on activated carbonRose bengal, safranin O, malachite greenThree-layered feed forward Levenberg-Marquardt back propagation (6-10-3)Ternary equilibrium, RSM (CCD)65-16-0pH, m, t, C01, C02, C03Removal percentageMG 94.26%, SO 71%, MG 76%[146]
ZeoliteAg1+, Co2+, Cu2+ANN Bayesian regularization backpropagation (4-10-1) and Adaptive Neuro-fuzzy Inference Systems (4-8-X-X-1)Isotherms275-49-0T, Si/Al ratio, C0, molecular weight of adsorbateAdsorption capacityAg1+ 5 mmol/g, Co2+ 2.51 mmol/g, Cu2+ 3.88 mmol/g[157]
Sargassum filipendula biomassCd2+-Zn2+Feed forward back propagation (7-5-2)Binary isotherms16CeAdsorption capacityCd2+ 291.2, Zn2+ 169 mg/g[287]
Activated carbon, wood charcoal and rice husk ashPhenol, ResorcinolThree-layer feed forward Levenberg-Marquardt back propagationBinary kinetics15-7-7pH, t, C0, mRemoval percentagePhenol 75%, Resorcinol 90%[288]
Chitosan foamsCu2+, Zn2+, Cr6+Multi-layer perceptron Levenberg Marquardt (3-1-1)Multicomponent Isotherms--CeAdsorption capacityCu2+ 61mg/g, Zn2+ 68 mg/g, Cr6+ 58 mg/g[289]
Aegel marmelos fruit shellNi2+ Cr6+Elite-ANN with ACM model (4-10-10-6)Equilibrium17-0-4C0, m, type of adsorbentRemoval percentage, adsorption capacity and CeNi2+ 59.26 mg/g, Cr6+ 12.67 mg/g[290]
SnO2 nanoparticle-loaded activated carbonAcid yellow 41, sunset yellowPrincipal component analysis-artificial neural networkBinary equilibrium, RSM (CCD)10-5-5pH, m, tRemoval percentageAY41 95.6%, SY 97.9%[291]

Nomenclature: adsorbent dosage (m), central composite design (CCD), final adsorbate concentration (Ce), initial adsorbate concentration (), particle size (Ps), response surface methodology (RSM), temperature (), time (), and volume ().