Review Article

A New Challenge for Radiologists: Radiomics in Breast Cancer

Table 1

Specifications of radiomics studies included in this narrative review.

ReferenceStudy designPatients  
(No)
Diagnostic modalityRadiomics imaging features selected (No)PredictionSensitivity  
Specificity  
Accurancy  
AUC

Parekh et al. (2017) [13]Retrospective124MRI (3T)690 (RFMs)Malignancy9385

Whitney et al. (2018) [14]Retrospective508MRI (1.5 and 3 T)38Malignancy0.846 (including size features)  
0.848 (excluding size features)

Bickelhaupt et al. (2017) [15]Retrospective50MRI (1.5 T)188Malignancy0.842-0.851

Bickelhaupt et al. (2018) [16]Retrospective222MRI (1.5 T)359Malignancy98.469.7

Zhang et al. (2017)[17]Retrospective117US364Malignancy85.789.3

Tagliafico et al. (2018)[18]Prospective20Mammography (DBT)104Malignancy0.567

Braman et al. (2017)[19]Retrospective117MRI (1.5 and 3 T)99NAC0.78 (training dataset)  
0.74(independent testing set)  
0.83 (HR+, HER2−)  
0.93 (TN/HER2+)  

Dong et al. (2017)[20]Retrospective146MRI (1.5 T)25Prognostic factors0.847 (training set; model 10 T2-fat suppression)   
0.770 (validation set; model 10 T2-fat suppression)   
0.847 (training set; model 8 DWI)   
0.787 (validation set; model 8)
0.863 (training set; model 10 joint T2-fat suppression/DWI)
0.805 (validation set; model 10 joint T2-fat suppression/DWI)

Obeid et al. (2016) [21]Retrospective63MRI (1.5 and 3 T)13Prognostic factors----

Ma et al. (2018)[22]Retrospective377MRI (3 T)56Prognostic factors77.776.90.7570.773

Liang et al. (2018)[23]Retrospective318MRI (1.5 T)30Prognostic factors0.762   
(training dataset)   
0.740   
(validation dataset)

Guo et al. (2015)[24]Retrospective91MRI (1.5 T)38Molecular subtypes0.877 (stage)   
0.693 (lymph node)   
0.789 (ER)   
0.689 (PR)   
0.641 (HER2)

Li et al. (2016) [4]Retrospective91MRI (1.5 T)38Molecular subtypes0.89 (ER+ vs ER−)  
0.69 (PR+ vs PR-)  
0.65 (HER”+ vs HER2-)  
0.67 TN vs others)

Wang et al. (2015) [25]Retrospective84MRI (3 T)85Molecular subtypes57.0 (TN vs others)   
62.0 (TN vs ER+)  
53.0 (TN vs PR+)  
49.5 (TN vs LumA)   
69.5 (TN vs LumB)
94.7(TN vs others)   
93.6 (TN vs ER+)  
94.1 (TN vs PR+)  
89.8(TN vs LumA)   
90.0 (TN vs LumB)
90.0 (TN vs others)   
89.4 (TN vs ER+)  
87.8 (TN vs PR+)  
81.8 (TN vs LumA)   
84.3 (TN vs LumB)
0.878 (TN vs others)   
0.883 (TN vs ER+)  
0.859 (TN vs PR+)  
0.814 (TN vs LumA)   
0.789 (TN vs LumB)

Fan et al. (2017)[26]Retrospective60MRI (1.5 T)88Molecular subtypes88. 2 (LumA)   
86.5 (LumB)   
81.1 (HER2)   
81.1 (basal-like)
76.9 (LumA)   
62.5 (LumB)   
100 (HER2)   
100 (basal-like)
0.867 (LumA)   
0.786 (LumB)   
0.888 (HER2)   
0.923 (basal-like)

Guo et al. (2017)[27]Retrospective215US463Molecular subtypes0.760

Ma et al. (2018)[28]Retrospective331Mammography39Molecular subtypes0.865 (TN vs non TN)   
0.784 (HER2 vs non HER2)   
0.752 (Lum vs non-Lum)

Li et al. (2016) [29]Retrospective84MRI (1.5 and 3T)38Recurrence0.88 (MammaPrint)   
0.76 (Oncotype DX)   
0.68 (PAM50 risk of relapse based on subtype)   
0.55 (PAM50 risk of relapse based on subtype and proliferation)   

Park et al. (2018)[30]Retrospective294MRI (1.5 T)156Recurrence----

Drukker et al. (2018)[31]Retrospective162MRI (1.5 T)1Recurrence----

(i) UC considering only radiomics models.
(ii) onsidering both tumor and BPE features.