Research Article
Tumor Segmentation in Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma: Deep Learning with Convolutional Neural Network
Table 3
Comparison of segmentation performance among our convolutional neural network model and other models. N.A.: not available.
| | | Dice similarity coefficient | Corresponding ratio | Percent match | Study | Algorithm | Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range |
| Current study | Convolutional neural network | 0.89±0.05 | 0.80-0.95 | 0.84±0.06 | 0.71-0.92 | 0.90±0.04 | 0.83-0.96 | Zhou at al. [7] | Support vector machine | N.A | N.A | 0.72±0.06 | 0.58~0.85 | 0.79±0.07 | 0.65-0.91 | Huang et al. [14] | Hidden Markov random field | N.A | N.A | 0.72 | 0.44-0.91 | 0.85 | 0.64-1.00 | Wang et al. [15] | Deep Convolutional Neural Networks | N.A | -0.80 | N.A | N.A | N.A | -0.90 |
|
|