Research Article

Prediction of Side Effects Using Comprehensive Similarity Measures

Table 4

Averaged AUCs from our dataset for 100 hold-out validation runs of our machine learning algorithms.

Validation setTest set
Type of feature setRFNBXGBLRRFNBXGBLR

All features0.90090.87130.89170.86410.90180.87130.89210.8642
Base + DDIs-N + SNPs + DDIs-D0.89640.85750.88340.85010.89730.85750.88350.8501
Base + SE-AH + SNPs + DDIs-D0.89610.87100.88960.86550.89700.87100.88960.8656
Base + SE-AH + DDIs-N + DDIs-D0.89470.86450.88590.85500.89590.86440.88630.8550
Base + SNPs + DDIs-N + SE-AH0.89400.86450.88680.85630.89510.86440.88700.8563
Base + SNPs + DDIs-N0.89050.85720.88090.85190.89130.85720.88090.8519
Base + DDIs-D + DDIs-N0.89010.85050.87730.84000.89110.85050.87730.8401
Base + SNPs + DDIs-N0.88860.84960.87750.84150.88970.84960.87760.8414
Base + DDIs-D + SE-AH0.88790.86410.88300.85630.88900.86400.88300.8563
Base + SE-AH + SNPs0.88740.86410.88400.85740.88850.86900.88400.8575
Base + SE-AH + DDIs-N0.88490.85400.87830.84220.88630.85390.87850.8421
Base + DDIs-D0.88120.85020.87360.84320.88200.85020.87360.8431
Base + SNPs0.87980.84930.87440.84400.88100.84920.87440.8440
Base + DDIs-N0.87880.83890.86810.82810.88020.83890.86830.8279
Base + SE-AH0.87610.85350.87400.84300.87740.85330.87410.8429
Base0.86590.83850.86340.83130.86730.83850.86360.8310