Research Article
Noninvasive Prediction of TERT Promoter Mutations in High-Grade Glioma by Radiomics Analysis Based on Multiparameter MRI
Table 4
Performance of 4 models for TERT promoter mutations prediction.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abbreviations: Model A: Age+Lac+Cho/Cr+Radscore +CNV; Model B: Age+Lac+Cho/Cr+Radscore; Model C: Radscore; Model D: CNV; AUC: area under the curve; SEN: sensitivity; SPE: specificity; ACC: accuracy; PPV: positive predictive value; NPV: negative predictive value; CI: confidence intervals. The bootstrap resampling method was adopted for 95% CI and the significance test of AUC (). The cutoff value was determined based on the output value of the radiomics nomogram in the training cohort. |