Review Article

Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions

Table 1

Summary of machine-learning algorithms for breast cancer diagnosis.

AuthorFeatureAlgorithmAccuracy (%)Dataset

Asri et al. [36]FNASVM97.13UCI
Ivančáková et al. [28]FNASVM97.66WDBC
Mondal et al. [24]EntropySVM91.5Gene Expression Omnibus
Ghasemzadeh et al. [30]Gabor waveletSVM96Mammography (DDSM)
Ayoub Shaikh and Ali [37]Wrapper subset evalSVM97Breast Cancer Digital Repository (BCDR)
Wang et al. [18]Full featuresSVM33.34SEER
Mengjie Yu [38]Concave pointsSVM99.77UCI
Wei et al. [33]BiCNNCNN97BreaKHis
Bejnordi et al. [39]MorphologyCNN92WSIs
Arau et al. [31]Full featuresCNN83Histology Dataset
Yap et al. [16]FCN-alexnetCNN98B&K Medical Panther 2002 and B&K Medical Hawk 2102 US systems
92
Ting et al. [21]WiseCNN90.50Digital Mammogram
Zhou et al. [25]CNNCNN95.8SWE data
Sun et al. [20]mRMRDeep neural network18.7METABRIC/MDNNMD
Kaur et al. [40]CNNMLP86Mini-MIAS
Joshi et al. [22]ScalingNN96.47WDBC
Radiya-Dixit et al. [34]Computational methodLR91.8BIDMC-MGH
Tahmassebi et al. [29]Volume distributionLR92WDBC
Braman et al. [41]HeterogeneityLR93ISPY1-TRIAL
Maysanjaya et al. [42]WrapperNB99.27.UCI
Chaurasia et al. [23]FNANB97.36WDBC
Tamilvanan [26]Dimensionality reductionNB82WDBC
Qiao et al. [17]BI-RADSAdaBoost93.48138 pathologically proven breast tumors
Turkki et al. [32]MorphologicalKNN95FinProg
Amrane et al. [19]FNAKNN97.51WDBC