Review Article
Tabu Search and Machine-Learning Classification of Benign and Malignant Proliferative Breast Lesions
Table 1
Summary of machine-learning algorithms for breast cancer diagnosis.
| Author | Feature | Algorithm | Accuracy (%) | Dataset |
| Asri et al. [36] | FNA | SVM | 97.13 | UCI | Ivančáková et al. [28] | FNA | SVM | 97.66 | WDBC | Mondal et al. [24] | Entropy | SVM | 91.5 | Gene Expression Omnibus | Ghasemzadeh et al. [30] | Gabor wavelet | SVM | 96 | Mammography (DDSM) | Ayoub Shaikh and Ali [37] | Wrapper subset eval | SVM | 97 | Breast Cancer Digital Repository (BCDR) | Wang et al. [18] | Full features | SVM | 33.34 | SEER | Mengjie Yu [38] | Concave points | SVM | 99.77 | UCI | Wei et al. [33] | BiCNN | CNN | 97 | BreaKHis | Bejnordi et al. [39] | Morphology | CNN | 92 | WSIs | Arau et al. [31] | Full features | CNN | 83 | Histology Dataset | Yap et al. [16] | FCN-alexnet | CNN | 98 | B&K Medical Panther 2002 and B&K Medical Hawk 2102 US systems | 92 | Ting et al. [21] | Wise | CNN | 90.50 | Digital Mammogram | Zhou et al. [25] | CNN | CNN | 95.8 | SWE data | Sun et al. [20] | mRMR | Deep neural network | 18.7 | METABRIC/MDNNMD | Kaur et al. [40] | CNN | MLP | 86 | Mini-MIAS | Joshi et al. [22] | Scaling | NN | 96.47 | WDBC | Radiya-Dixit et al. [34] | Computational method | LR | 91.8 | BIDMC-MGH | Tahmassebi et al. [29] | Volume distribution | LR | 92 | WDBC | Braman et al. [41] | Heterogeneity | LR | 93 | ISPY1-TRIAL | Maysanjaya et al. [42] | Wrapper | NB | 99.27. | UCI | Chaurasia et al. [23] | FNA | NB | 97.36 | WDBC | Tamilvanan [26] | Dimensionality reduction | NB | 82 | WDBC | Qiao et al. [17] | BI-RADS | AdaBoost | 93.48 | 138 pathologically proven breast tumors | Turkki et al. [32] | Morphological | KNN | 95 | FinProg | Amrane et al. [19] | FNA | KNN | 97.51 | WDBC |
|
|