BioMed Research International / 2020 / Article / Tab 2 / Research Article
An Amalgamated Approach to Bilevel Feature Selection Techniques Utilizing Soft Computing Methods for Classifying Colon Cancer Table 2 Performance analysis of classifiers in terms of classification accuracies with six optimization techniques for different gene selection methods using 30-60-90 selected genes.
Classifiers Gene selection Optimization techniques Invasive Weed Optimization Teaching Learning-Based Optimization League Championship Optimization Beetle Antennae Search Optimization Crow Search Optimization Fruit fly Optimization RF 30 85.74344 93.75 89.85625 76.135 76.135 79.94629 60 85.22406 94.01125 93.36 76.3375 89.20625 87.48398 90 75.84375 81.9 89.6 76 78.71281 92.51797 Adaboost 30 84.375 85.67875 91.1475 75.75 76.3375 89.96621 60 94.01125 93.555 95.575 76.3375 76.75938 85.9375 90 92.19 82.942 85.74344 76.23625 75.625 88.62695 LR 30 80.86 90.49688 94.53375 77.27594 77.83109 93.49766 60 76.675 86.76016 90.1125 76.25313 75.60938 98.69688 90 88.8125 89.6 76.86906 93.23 85.54938 94.03444 DT 30 97.395 77.05469 77.53719 95.705 92.19 94.23867 60 95.575 89.20625 78.38625 76.3375 95.575 94.23867 90 79.69 78.45156 94.795 93.75 97.655 82.86824 QDA 30 76.37125 77.08 93.555 86.32813 93.36 97.915 60 88.55 91.93 94.2725 76.3375 86.66 95.835 90 99.16 92.19 92.19 76.3375 91.47912 95.70313 Average 86.71975 86.97377 89.1689 80.55673 84.57899 91.43377