Research Article
Separability of Acute Cerebral Infarction Lesions in CT Based Radiomics: Toward Artificial Intelligence-Assisted Diagnosis
Table 3
The classification accuracy result with selected features under different thresholds of information gain on candidate region.
| Classifier | Lesions and their symmetrical regions threshold | Normal and their symmetrical regions threshold | Lesions and normal regions threshold | 0.0 | 0.1 | 0.2 | 0.3 | 0.0 | 0.1 | 0.2 | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
| Multilayer perceptron | 0.4902 | 0.4974 | 0.5694 | 0.7269 | 0.5061 | 0.4983 | 0.4434 | 0.5476 | 0.5242 | 0.5291 | 0.5292 | 0.5125 | 0.7185 | Decision tree | 0.5980 | 0.6138 | 0.6603 | 0.6655 | 0.5941 | 0.6333 | 0.5841 | 0.7155 | 0.7423 | 0.7782 | 0.7742 | 0.7982 | 0.8230 | Random forest | 0.5897 | 0.6452 | 0.7036 | 0.7206 | 0.6055 | 0.6782 | 0.5775 | 0.7700 | 0.7932 | 0.8401 | 0.8260 | 0.8162 | 0.8360 | Adaboost | 0.5850 | 0.6263 | 0.6811 | 0.6818 | 0.5946 | 0.6651 | 0.6001 | 0.7071 | 0.7276 | 0.7671 | 0.7862 | 0.7748 | 0.8291 | Gradient boosting | 0.5977 | 0.6346 | 0.6838 | 0.7463 | 0.5931 | 0.6505 | 0.5950 | 0.7517 | 0.7564 | 0.7903 | 0.7978 | 0.8017 | 0.8694 | Bagging | 0.6217 | 0.6567 | 0.6973 | 0.7249 | 0.6065 | 0.6529 | 0.5745 | 0.7530 | 0.7767 | 0.8169 | 0.8282 | 0.8144 | 0.8307 | Bernoulli naive Bayes | 0.5100 | 0.6164 | 0.6724 | 0.7105 | 0.4413 | 0.5175 | 0.4318 | 0.6557 | 0.6748 | 0.7253 | 0.7594 | 0.7566 | 0.6785 | Gaussian naive Bayes | 0.4743 | 0.6203 | 0.6661 | 0.6984 | 0.4801 | 0.4574 | 0.4439 | 0.3737 | 0.3935 | 0.8098 | 0.7842 | 0.8323 | 0.8605 | Support vector machine | 0.4184 | 0.4223 | 0.6903 | 0.4211 | 0.4382 | 0.4299 | 0.4326 | 0.6785 | 0.6785 | 0.6650 | 0.8123 | 0.7942 | 0.6785 | -nearest neighbor | 0.2686 | 0.4563 | 0.7188 | 0.7748 | 0.2690 | 0.3492 | 0.6137 | 0.5812 | 0.5585 | 0.6437 | 0.8153 | 0.8010 | 0.8673 |
| Average | | 0.5789 | 0.6743 | 0.6870 | | 0.5532 | 0.5296 | | 0.6625 | 0.7365 | 0.7712 | 0.7701 | 0.7991 | | | 0.6467 | | | 0.5414 | | | | | 0.7480 | | |
|
|