Research Article
Improving an Intelligent Detection System for Coronary Heart Disease Using a Two-Tier Classifier Ensemble
Table 1
Summarization of existing methods for CHD prediction in chronological order.
| Study | Technique | Feature selection | Validation method | Dataset |
| Ozcift and Gulten [13] | Rotation forest | No | 10CV | Cleveland | Muthukaruppan and Er [14] | Fuzzy expert system | No | Hold-out | Cleveland | Nahar et al. [15] | SMO | Yes | 10CV | Cleveland | Alizadehsani et al. [16] | Bagging-C4.5 | Yes | 10CV | Z-Alizadeh Sani | Alizadehsani et al. [17] | SMO | Yes | 10CV | Z-Alizadeh Sani | Alizadehsani et al. [18] | SVM | Yes | 10CV | Z-Alizadeh Sani | Verma et al. [19] | MLP | Yes | 10CV | Cleveland, IGMC | Qin et al. [20] | EA-MFS | Yes | 10CV | Z-Alizadeh Sani | Arabasadi et al. [21] | Hybrid NN-GA | Yes | 10CV | Z-Alizadeh Sani, Cleveland, Hungarian, Long-beach-va, and Switzerland | Haq et al. [22] | SVM | Yes | 10CV | Cleveland | Dwivedi [23] | Logistic regression | No | 10CV | Statlog | Ahmadi et al. [24] | NN | Yes | Hold-out | Cleveland | Abdar et al. [25] | SVM | Yes | 10CV | Z-Alizadeh Sani | Raza [26] | Voting ensemble | No | 10CV | Statlog | Amin et al. [9] | Voting ensemble | Yes | 10CV | Cleveland, Statlog | Mohan et al. [27] | HRFLM | No | Notmentioned | Cleveland, Hungarian, Long-beach-va, and Switzerland |
|
|