Research Article

[Retracted] Retinal OCT Texture Analysis for Differentiating Healthy Controls from Multiple Sclerosis (MS) with/without Optic Neuritis

Table 3

Evaluation of statistical significance of the extracted features, before feature selection. The -test was used to identify which features show significant differences between healthy and MS (ON and None-ON) cases. The values indicate the test rejection of the null hypothesis at 5% significance level, considering the Bonferroni correction ( value < 0.001).

FeaturesLayer (HC vs. MS-None-ON) (HC vs. MS-ON) (MS-ON vs. MS-None-ON)(HC vs. MS)FeaturesLayer (HC vs. MS-None-ON) (HC vs. MS-ON) (MS-ON vs. MS-None-ON)(HC vs. MS)

Autocorrelation20.001<0.0010.966<0.001Fractal mean1<0.001<0.0010.8320.051
Autocorrelation3<0.0010.1010.0920.003Fractal mean4<0.001<0.0010.7990.955
Autocorrelation40.0010.0260.2220.008Fractal mean5<0.001<0.0010.8620.896
Cluster prominence30.0010.0860.033<0.001Fractal mean8<0.001<0.0010.3390.785
Cluster prominence40.0020.0570.525<0.001Fractal mean9<0.001<0.0010.9640.710
Cluster shade20.038<0.0010.2090.044Fractal mean10<0.001<0.0010.5140.408
Cluster shade3<0.0010.0250.054<0.001Fractal Std.5<0.001<0.0010.7440.014
Cluster shade4<0.0010.0150.298<0.001Fractal Std.80.1130.0010.276<0.001
Contrast10.341<0.0010.0580.012Fractal Std.9<0.001<0.0010.751<0.001
Contrast2<0.001<0.0010.944<0.001Fractal Std.10<0.001<0.0011.000<0.001
Contrast3<0.0010.0050.1500.001LBP mean20.0010.0030.981<0.001
Contrast4<0.0010.0010.398<0.001LBP mean30.001<0.0010.9500.017
Correlation1<0.001<0.0010.9990.927LBP mean4<0.001<0.0010.1270.024
Correlation2<0.0010.0040.0290.546LBP mean5<0.001<0.0010.3530.061
Difference entropy2<0.001<0.0010.9290.951LBP mean6<0.001<0.0010.9410.335
Difference entropy3<0.001<0.0010.5130.677LBP mean7<0.001<0.0010.908<0.001
Difference entropy4<0.001<0.0010.5460.263LBP mean9<0.001<0.0010.2510.068
Difference entropy5<0.0010.0040.4130.733LBP Std.4<0.001<0.0010.4090.319
Difference variance2<0.001<0.0010.9990.001LBP Std.5<0.001<0.0010.4560.645
Difference variance3<0.0010.0010.169<0.001LBP Std.6<0.0010.0010.9050.234
Difference variance4<0.001<0.0010.523<0.001LBP Std.7<0.001<0.0010.2050.116
Dissimilarity2<0.001<0.0010.7900.010LBP Std.9<0.001<0.0010.4170.150
Dissimilarity3<0.0010.0010.2710.030LBP dynamic range30.5250.0020.088<0.001
Dissimilarity4<0.0010.0010.3800.013LBP dynamic range5<0.0010.0040.5670.164
Dissimilarity5<0.0010.0350.2740.302LBP dynamic range6<0.0010.0060.675<0.001
Energy2<0.001<0.0010.999<0.001LBP kurtosis2<0.001<0.0010.8040.968
Energy3<0.001<0.0010.921<0.001LBP kurtosis3<0.001<0.0010.9410.048
Energy4<0.0010.0010.5280.861LBP kurtosis40.001<0.0010.8050.001
Energy5<0.0010.0190.3290.008LDP mean20.4590.6590.961<0.001
Entropy2<0.001<0.0010.8960.903LDP mean4<0.001<0.0010.5640.067
Entropy3<0.001<0.0010.4460.765LDP mean5<0.001<0.0010.5550.035
Entropy4<0.001<0.0010.4530.274LDP mean6<0.001<0.0010.1210.799
Entropy5<0.0010.0290.2220.871LDP mean7<0.001<0.0010.8830.047
Homogeneity2<0.001<0.0010.9420.900LDP mean8<0.001<0.0010.8080.055
Homogeneity3<0.001<0.0010.6810.690LDP mean9<0.001<0.0010.2190.037
Homogeneity4<0.001<0.0010.5040.201LDP mean10<0.001<0.0010.8340.782
Homogeneity5<0.0010.0060.3960.680LDP skewness2<0.001<0.0010.8130.530
IMC12<0.001<0.0010.8620.017LDP skewness3<0.001<0.0010.9300.085
IMC290.004<0.0010.6190.043LDP skewness40.004<0.0010.6330.002
Inverse difference moment normalized10.319<0.0010.0630.011LDP Std.2<0.001<0.0010.2760.018
Inverse difference moment normalized2<0.001<0.0010.920<0.001LDP Std.4<0.001<0.0010.6520.083
Inverse difference moment normalized3<0.0010.0060.1540.001LDP Std.5<0.001<0.0010.8820.025
Inverse difference moment normalized4<0.0010.0010.381<0.001LDP Std.60.005<0.0010..0930.597
Maximum probability2<0.001<0.0011.000<0.001LDP Std.7<0.001<0.0010.5540.310
Maximum probability3<0.001<0.0010.876<0.001LDP Std.8<0.001<0.0010.9890.870
Maximum probability4<0.0010.0680.2930.430LDP Std.9<0.001<0.0010.629.882
Maximum probability5<0.0010.0620.2220.647LDP Std.10<0.001<0.0010.9010.792
Sum average2<0.001<0.0010.8140.005LDP dynamic range10.1880.2190.999<0.001
Sum average3<0.0010.0130.1940.028LDP kurtosis2<0.001<0.0010.998<0.001
Sum average4<0.0010.0060.3830.048LDP kurtosis3<0.001<0.0011.000<0.001
Sum entropy2<0.001<0.0010.9530.708LDP kurtosis4<0.001<0.0010.8010.466
Sum entropy3<0.0010.0020.4020.938LDP kurtosis5<0.0010.0030.7810.001
Sum entropy4<0.0010.0010.5140.384LOOP mean20.4590.6590.961<0.001
Sum entropy5<0.0010.0640.1820.806LOOP mean4<0.001<0.0010.5640.067
Sum of squares2<0.001<0.0010.5280.001LOOP mean5<0.001<0.0010.5550.035
Sum of squares3<0.0010.0140.092<0.001LOOP mean6<0.001<0.0010.1210.799
Sum of squares4<0.0010.0030.262<0.001LOOP mean7<0.001<0.0010.8830.047
Sum variance2<0.001<0.0010.4000.002LOOP mean8<0.001<0.0010.8080.055
Sum variance3<0.0010.0160.087<0.001LOOP mean9<0.001<0.0010.2190.037
Sum variance4<0.0010.0040.248<0.001LOOP mean10<0.001<0.0010.8340.782
LOOP Std.2<0.001<0.0010.9640.013LOOP skewness2<0.001<0.0010.998<0.001
LOOP Std.3<0.001<0.0010.2020.021LOOP skewness3<0.001<0.0011.000<0.001
LOOP Std.4<0.001<0.0010.8000.218LOOP skewness4<0.001<0.0010.8180.641
LOOP Std.5<0.001<0.0010.8300.019LOOP skewness5<0.0010.0020.7690.001
LOOP Std.60.014<0.0010.0910.548LOOP Std.9<0.001<0.0010.5380.390
LOOP Std.7<0.001<0.0010.5760.425LOOP Std.10<0.001<0.0010.7860.799
LOOP Std.8<0.001<0.0010.4630.316