Research Article
Assessing Dry Weight of Hemodialysis Patients via Sparse Laplacian Regularized RVFL Neural Network with L2,1-Norm
Table 2
Comparison on existing methods via 10-fold cross-validation.
| Method | | squared | RMSE | Empirical cumulative distribution plot | Highest value | Lowest value | Median value |
| BCM | 0.9473 | 0.9137 | 1.9694 | 3.2235 | -6.2776 | -0.9863 | LR | 0.9403 | 0.9308 | 1.4335 | 4.2524 | -4.4014 | 0.1418 | ANN (BP) | 0.9398 | 0.9295 | 1.4794 | 7.3661 | -4.7447 | 0.1324 | MKRR | 0.9399 | 0.9289 | 1.5015 | 4.9227 | -4.2604 | 0.1104 | MKSVR | 0.9412 | 0.9321 | 1.3817 | 4.3962 | -4.1273 | 0.0082 | RVFL | 0.9389 | 0.9300 | 1.3828 | 6.7004 | -4.3557 | 0.0704 | SLapRVFL (our method) | 0.9632 | 0.9501 | 1.3136 | 3.1940 | -3.5066 | 0.1014 |
|
|
The results are from previous work on MKSVR [ 39]. |