Research Article
FFU-Net: Feature Fusion U-Net for Lesion Segmentation of Diabetic Retinopathy
Table 5
Comparative segmentation results of the proposed model against the state of the art on MA and HE.
| | | MA | | | HE | | Methods | SEN | IOU | DICE | SEN | IOU | DICE |
| Dai et al. | 0.5498 | 0.5237 | 0.6874 | 0.6895 | 0.6990 | 0.8228 | Zhang et al. | 0.4897 | 0.4723 | 0.6416 | 0.6418 | 0.6407 | 0.7810 | Van Grinsven et al. | 0.4832 | 0.4667 | 0.6364 | 0.6844 | 0.6761 | 0.8068 | M-Net | 0.5366 | 0.5097 | 0.6753 | 0.6872 | 0.6796 | 0.8093 | FC-DenseNet | 0.5521 | 0.5276 | 0.6908 | 0.6976 | 0.6960 | 0.8208 | Sambyal et al. | 0.5537 | 0.5438 | 0.7045 | 0.6998 | 0.7038 | 0.8261 | FFU-Net | 0.5933 | 0.5610 | 0.7188 | 0.7342 | 0.7365 | 0.8450 | U-Net | 0.4810 | 0.4490 | 0.6197 | 0.6366 | 0.6333 | 0.7755 |
|
|