Research Article

Modeling Respiratory Signals by Deformable Image Registration on 4DCT Lung Images

Algorithm 5

Entropy error rate.
1. Input the source slice: SrcSliceIM (contains only the left and right lungs) and the target slice: TarSliceIM (contains only the left and right lungs)
2. Compute the entropy of each source and target slices
   SrcEntropyFeatures = ExtractEntropyFeatures(SrcSliceIM)
   TarEntropyFeatures = ExtractEntropyFeatures(TarSliceIM)
3. Entropy Error Rate
   EntropyErrorRate = abs(TarEntropyFeatures - SrcEntropyFeatures)
4. End
5. Result in EntropyErrorRate
Appendix
ExtractEntropyFeatures method
1. Calculated p contains the normalized histogram counts returned from the image
2. Entropy is defined as -sum(p.log2(p))