Development and Validation of a Magnetic Resonance Imaging-Based Machine Learning Model for TMJ Pathologies
Table 4
Evaluation for diagnostic performance by four indicators for mandibular condyle: precision, recall, F1-score, and support in the training set. “1” indicates normal. “2” indicates degenerative joint diseases.
Indicators
KNN
SVM
XGBoost
RF
LR
DT
Training
1
Precision
0.83
0.79
0.91
0.95
0.81
0.88
Recall
0.92
1.00
0.98
1.00
0.98
0.98
F1-score
0.88
0.88
0.95
0.97
0.89
0.94
Support
53
53
53
53
53
53
2
Precision
0.50
0.00
0.90
1.00
0.67
0.80
Recall
0.29
0.00
0.64
0.79
0.14
0.74
F1-score
0.36
0.00
0.75
0.88
0.24
0.76
Support
14
14
14
14
14
14
Testing
1
Precision
0.81
0.78
0.81
0.78
0.78
0.70
Recall
0.93
1.00
0.93
1.00
1.00
0.86
F1-score
0.87
0.88
0.87
0.88
0.88
0.83
Support
14
14
14
14
14
14
2
Precision
0.50
0.00
0.50
0.00
0.00
0.33
Recall
0.25
0.00
0.25
0.00
0.00
0.25
F1-score
0.33
0.00
0.33
0.00
0.00
0.29
Support
4
4
4
4
4
4
LR: logistic regression; RF: random forest; DT: decision tree; KNN: -nearest neighbors; XGBoost; SVM: support vector machine.