Research Article

A Machine Learning Approach to Assess Differential Item Functioning in Psychometric Questionnaires Using the Elastic Net Regularized Ordinal Logistic Regression in Small Sample Size Groups

Table 3

The powers of the regularized (elastic net) and non-regularized OLR models in detecting severe uniform DIF (DIF=0.8) when J=5.

IRatioNOLRRidgeElastic-net OLRLASSO
w=0w=0.01w=0.02w=0.03w=0.04w=0.05w=0.06w=0.07w=0.1w=0.5w=1

5nr=nf1000.7050.5640.5500.6790.7270.7540.7670.7740.7780.7900.8080.809
1500.8670.7890.7810.8600.8890.9010.9060.9100.9140.9170.9310.932
2000.9400.8940.8850.9440.9580.9640.9660.9680.9690.9690.9710.971
3000.9950.9850.9840.9960.9970.9970.9970.9970.9970.9970.9970.997
4000.9981.0001.0001.0001.0001.0001.0001.0001.0001.0001.0001.000

5nr=2nf1000.6220.4710.4640.6000.6460.6730.6910.7010.7030.7170.7380.744
1500.8110.7330.7290.8170.8510.8620.8710.8730.8790.8860.8980.899
2000.9120.8500.8450.9200.9310.9400.9470.9510.9510.9530.9610.961
3000.9890.9870.9750.9860.9890.9900.9910.9920.9920.9930.9950.995
4000.9990.9970.9970.9991.0001.0001.0001.0001.0001.0001.0001.000

5nr=3nf1000.5570.4000.3930.5190.5670.5590.6130.6230.6310.6480.6680.670
1500.7470.6200.6100.7370.7700.7840.7940.8020.8070.8150.8400.841
2000.8730.7850.7770.8620.8920.9070.9130.9150.9180.9180.9310.932
3000.9680.9500.9470.9700.9780.9810.9830.9820.9820.9840.9880.988
4000.9950.9850.9840.9950.9950.9960.9960.9970.9970.9970.9970.997

λBIC-0.3800.3800.1900.1300.0950.0760.0630.0540.0380.0080.004

10nr=nf1000.4560.3830.3770.4860.5180.5430.5480.5540.5590.5760.5960.597
1500.6650.5920.5800.6870.7130.7260.7370.7460.7490.7600.7730.774
2000.8000.7630.7540.8350.8550.8600.8610.8640.8680.8720.8880.888
3000.9400.9210.9130.9510.9630.9670.9670.9660.9670.9680.9760.976
4000.9790.9710.9680.9880.9900.9920.9910.9910.9910.9910.9930.993

10nr=2nf1000.3410.3360.3310.4330.4850.5030.5180.5230.5220.5340.5450.547
1500.6060.5300.5210.6190.6650.6740.6890.6980.7030.7120.7190.719
2000.7480.6870.6760.7700.7960.8090.8130.8140.8200.8270.8320.832
3000.9070.8790.8700.9160.9290.9330.9350.9370.9400.9470.9500.950
4000.9650.9580.9550.9730.9780.9790.9810.9810.9820.9820.9870.987

10nr=3nf1000.3410.2740.2630.3610.4000.4200.4320.4370.4410.4470.4640.464
1500.5450.4590.4500.5580.5910.6050.6120.6230.6260.6350.6430.644
2000.6670.5960.5890.6780.7210.7370.7490.7570.7510.7610.7710.771
3000.8350.8040.7950.8570.8820.8950.9000.9020.9050.9090.9130.913
4000.9350.9050.8960.9410.9510.9580.9600.9600.9600.9600.9630.964

λBIC-0.3150.3150.1600.1050.0800.0630.0520.0450.0320.0060.003

Note: DIF: differential item functioning; I: number of items in the scale; J: number of response categories; LASSO: least absolute shrinkage and selection operator; λ: regularization parameter; OLR: ordinal logistic regression; w: weighting parameter; Ratio: sample size ratio between the focal and reference groups; nf and nr indicate sample sizes in the focal and reference groups, respectively; N: total sample size (N=nf +nr). These λ values were obtained according to the Bayesian information criterion (BIC).