Research Article
[Retracted] Deep Transfer Learning-Based Breast Cancer Detection and Classification Model Using Photoacoustic Multimodal Images
Table 1
Result analysis of SEODTL-BDC technique under distinct training/testing dataset.
| Methods | Precision | Recall | Accuracy | -score |
| Training/testing -50 : 50 | Benign | 0.9954 | 0.9954 | 0.9949 | 0.9954 | Malignant | 0.9905 | 0.9905 | 0.9949 | 0.9905 | Normal | 0.9851 | 0.9851 | 0.9949 | 0.9851 | Average | 0.9903 | 0.9903 | 0.9949 | 0.9903 | Training/testing -70 : 30 | Benign | 0.9924 | 0.9924 | 0.9915 | 0.9924 | Malignant | 1.0000 | 1.0000 | 1.0000 | 1.0000 | Normal | 0.9750 | 0.9750 | 0.9915 | 0.9750 | Average | 0.9891 | 0.9891 | 0.9943 | 0.9891 | Training/testing -60 : 40 | Benign | 0.9943 | 0.9943 | 0.9936 | 0.9943 | Malignant | 0.9765 | 0.9881 | 0.9904 | 0.9822 | Normal | 0.9808 | 0.9623 | 0.9904 | 0.9714 | Average | 0.9838 | 0.9815 | 0.9915 | 0.9827 |
|
|