Research Article

[Retracted] A Novel Method for Parkinson’s Disease Diagnosis Utilizing Treatment Protocols

Table 2

Classifier achievement data for each data group.
(a)

Data setBaseline data groupMFCC data group
Performance criteriaClassifier algorithms
Decision tree (DT)kNNSVMDecision tree (DT)kNNSVM

Accuracy rate (%)71.3568.7566.6769.797573.44
Sensitivity0.750.70.720.60.720.7
Specificity0.680.680.610.790.7900.78
F-measurement0.720.690.660.690.750.73
Kappa0.430.380.330.40.50.47
Area under the ROC curve0.710.710.680720.720.72

(b)

Data setTime data groupVocal data group
Performance criteriaClassifier algorithms
Decision tree (DT)kNNSVMDecision tree (DT)kNNSVM

Accuracy rate (%)66.1567.7172.461.9864.0663.02
Sensitivity0.730.820.80.640.580.64
Specificity0.590.530.650.60.70.63
F-measurement0.650.650.720.620.640.63
Kappa0.320.350.450.240.280.26
Area under the ROC curve0.650.690.700.610.630.64

(c)

Data setWavelet data groupWhole data group
Performance criteriaClassifier algorithms
Decision tree (DT)kNNSVMDecision tree (DT)kNNSVM

Accuracy rate (%)68.2373.4479.6969.7976.5685.42
Sensitivity0.810.760.970.60.810.94
Specificity0.550.720.630.790.7200.78
F-measurement0.660.730.760.690.760.86
Kappa0.360.470.590.40.530.72
Area under the ROC curve0.690.740.820.700.780.89