Research Article

Use of Machine Learning and Routine Laboratory Tests for Diabetes Mellitus Screening

Table 2

Performance of the studied classification models using healthy, prediabetes, and diabetes (HPD) dataset.

ClassKNNSVMNBRFANN

Sensitivity (SN %)
Diabetes47.062.463.162.466.2
Prediabetes53.463.756.363.767.9
Healthy78.779.279.479.276.6
Specificity (SP %)
Diabetes99.098.495.998.498.0
Prediabetes74.276.577.876.575.0
Healthy64.675.072.675.979.1
Precision (PR %)
Diabetes89.186.972.386.984.9
Prediabetes55.762.250.662.262.2
Healthy66.974.272.574.276.9
Negative precision (NPR %)
Diabetes91.693.893.893.894.4
Prediabetes72.577.774.677.779.4
Healthy76.979.879.579.878.8
F1 score (F1 %)
Diabetes61.872.667.472.674.4
Prediabetes54.562.658.362.964.9
Healthy72.376.675.876.676.7