Research Article

Use of Machine Learning and Routine Laboratory Tests for Diabetes Mellitus Screening

Table 4

Performance of the studied regression models using healthy, prediabetes, and diabetes (HPDr) dataset.

ClassKNNrSVMrNBrRFrANNr

Sensitivity (SN %)
Diabetes51.367.063.168.066.3
Prediabetes60.759.956.347.151.7
Healthy75.280.279.485.885.3
Specificity (SP %)
Diabetes98.798.095.997.998.0
Prediabetes71.278.277.882.981.7
Healthy71.973.172.663.567.5
Precision (PR %)
Diabetes87.085.072.384.684.8
Prediabetes56.062.460.662.563.1
Healthy70.973.172.568.270.5
Negative precision (NPR %)
Diabetes92.294.593.894.594.4
Prediabetes74.976.374.672.173.6
Healthy76.180.379.583.183.4
F1 score (F1 %)
Diabetes64.574.967.474.873.4
Prediabetes58.361.158.353.756.8
Healthy73.076.575.873.077.2