Research Article

[Retracted] Keratoconus Classification with Convolutional Neural Networks Using Segmentation and Index Quantification of Eye Topography Images by Particle Swarm Optimisation

Table 1

Machine learning techniques applied for keratoconus classification in the literature.

AuthorsClassificationNetworkAccuracySensitivitySpecificity

Accardo et al.Normal and keratoconusBPN9893.398.6
Souza et al.Normal and keratoconusSVM10075
MLP10075
RBFNN9875
Toutounchian et al.Normal, mild keratoconus, and keratoconusMLP77.6
SVM72
DT84
RBFNN71.2
Arbelaez et al.Normal, abnormal, subclinical, and keratoconusSVM95.27587.696.9
Hidalgo et al.Astigmatism, forme fruste keratoconus, keratoconus, normal, and postrefractive surgerySVM88.877.2297.02
Lavric et al.Keratoconus, forme fruste keratoconus, and normalQSVM93
Santos et al.Normal and keratoconusCorneaNet99.56
Kamiya et al.Normal and keratoconus 4 gradingsResNet-1899.110098.4
Shi et al.Normal, keratoconus, and subclinicalNN93
Kuo et al.Normal and keratoconusVGG1693.191.794.4
InceptionV393.191.794.4
ResNet15295.894.497.2
Lavric et al.5 classes as normal, forme fruste, keratoconus II, keratoconus III, and keratoconus IVSVMAUC 0.88
3 classes as normal, forme fruste, and keratoconusSVMAUC 0.96
Normal and keratoconusSVMAUC 0.99
Cao et al.Normal and keratoconusSVM88.8