[Retracted] Keratoconus Classification with Convolutional Neural Networks Using Segmentation and Index Quantification of Eye Topography Images by Particle Swarm Optimisation
Table 1
Machine learning techniques applied for keratoconus classification in the literature.
Authors
Classification
Network
Accuracy
Sensitivity
Specificity
Accardo et al.
Normal and keratoconus
BPN
98
93.3
98.6
Souza et al.
Normal and keratoconus
SVM
—
100
75
MLP
—
100
75
RBFNN
—
98
75
Toutounchian et al.
Normal, mild keratoconus, and keratoconus
MLP
77.6
—
—
SVM
72
—
—
DT
84
—
—
RBFNN
71.2
—
—
Arbelaez et al.
Normal, abnormal, subclinical, and keratoconus
SVM
95.275
87.6
96.9
Hidalgo et al.
Astigmatism, forme fruste keratoconus, keratoconus, normal, and postrefractive surgery
SVM
88.8
77.22
97.02
Lavric et al.
Keratoconus, forme fruste keratoconus, and normal
QSVM
93
—
—
Santos et al.
Normal and keratoconus
CorneaNet
99.56
Kamiya et al.
Normal and keratoconus 4 gradings
ResNet-18
99.1
100
98.4
Shi et al.
Normal, keratoconus, and subclinical
NN
93
Kuo et al.
Normal and keratoconus
VGG16
93.1
91.7
94.4
InceptionV3
93.1
91.7
94.4
ResNet152
95.8
94.4
97.2
Lavric et al.
5 classes as normal, forme fruste, keratoconus II, keratoconus III, and keratoconus IV
SVM
AUC 0.88
3 classes as normal, forme fruste, and keratoconus