Research Article
[Retracted] Predicting the Growth of F. proliferatum and F. culmorum and the Growth of Mycotoxin Using Machine Learning Approach
Table 1
Performance of ML models for predicting the growth rate, HR-2, and T-2.
| | Output parameter | Machine learning tested model | Parameter of best model | | |
| | Growth rate | XGBoost | ; , , , , , , | 1.445 | 0.866 | | Artificial neural network | 1.265 | 0.898 | | SVM | 1.162 | 0.921 | | Random forest | 1.542 | 0.918 | | MLR | 1.670 | 0.845 | | Production of T-2 | XGBoost | ; , , , , , , | 0.768 | 0.795 | | Artificial neural network | 0.402 | 0.945 | | SVM | 0.356 | 0.765 | | Random forest | 0.623 | 0.787 | | MLR | 0.635 | 0.765 | | Production of HT-2 | XGBoost | ; , , , , , , | 0.543 | 0.723 | | Artificial neural network | 0.525 | 0.782 | | SVM | 0.567 | 0.805 | | Random forest | 0.543 | 0.775 | | MLR | 0.885 | 0.764 |
|
|