Research Article

Validity of Machine Learning in Detecting Complicated Appendicitis in a Resource-Limited Setting: Findings from Vietnam

Table 3

Characteristics of machine learning models to classify complicated appendicitis.

Model and parameters usedDescriptionImbalance unadjusted dataImbalance adjusted data
AUCAccuracyAUCAccuracy

SVM
 LinearLiner function0.7110.7520.7300.655
 GaussianRadial basis function0.6990.7980.7540.666
 SigmoidSigmoid function0.6270.7260.6370.596
 PolynomialPolynomial function0.7280.8050.7910.726
DT
 GiniGini impurity0.5740.6890.7190.719
 EntropyInformation gain - entropy0.6090.6970.7580.758
Logistic
 NCGNewton -CG0.7110.8050.7370.675
 LBFGSLimited-memory Broyden-Fletcher-Goldfarb-Shanno0.7110.8050.7370.675
 LibLiblinear0.7140.8030.7890.729
 SAGStochastic average gradient descent0.7110.8050.7370.675
 SAGAStochastic average gradient accelerated0.7140.8020.7890.726
KNN
 UniformUniform weights0.6800.7790.8150.734
 DistanceDistance weights0.6720.7760.8310.741
ANN
 GD_aGradient descent, identity0.7320.8070.8090.743
 GD_bGradient descent, logistic0.7130.8020.8030.737
 GD_cGradient descent, tanh0.7340.8050.810.742
 GD_dGradient descent, ReLU0.7480.8070.8260.766
 SGD_aStochastic gradient descent, identity0.6920.7760.6900.632
 SGD_bStochastic gradient descent, logistic0.6810.7520.6140.535
 SGD_cStochastic gradient descent, tanh0.6950.7740.6910.633
 SGD_dStochastic gradient descent, ReLU0.6880.7520.6890.631
 LBFGS_aLimited-memory BFGS, identity0.7440.8020.8110.750
 LBFGS_bLimited-memory BFGS, logistic0.6410.6870.8200.755
 LBFGS_cLimited-memory BFGS, tanh0.6440.7040.8530.776
 LBFGS_dLimited-memory BFGS, ReLU0.7070.7760.8380.754
GB
 GB1Friedman MSE, sqrt, deviance0.7410.8120.8870.823
 GB2Friedman MSE, log, deviance0.7530.8100.8900.820
 GB3Friedman MSE, deviance0.7460.8020.8870.825
 GB4Friedman MSE, sqrt, AdaBoost0.7710.8150.8880.818
 GB5Friedman MSE, log, AdaBoost0.7500.8100.8940.821
 GB6Friedman MSE, AdaBoost0.7560.8100.8870.820
 GB7MSE, sqrt, deviance0.7450.8070.890.821
 GB8MSE, log, deviance0.7430.8100.8860.814
 GB9MSE, deviance0.7400.8030.8870.824
 GB10MSE, sqrt, AdaBoost0.7520.8090.8890.808
 GB11MSE, log, AdaBoost0.7450.8120.890.818
 GB12MSE, AdaBoost0.7550.8120.8870.820