| Model and parameters used | Description | Imbalance unadjusted data | Imbalance adjusted data | | | AUC | Accuracy | AUC | Accuracy |
| SVM | Linear | Liner function | 0.711 | 0.752 | 0.730 | 0.655 | Gaussian | Radial basis function | 0.699 | 0.798 | 0.754 | 0.666 | Sigmoid | Sigmoid function | 0.627 | 0.726 | 0.637 | 0.596 | Polynomial | Polynomial function | 0.728 | 0.805 | 0.791 | 0.726 | DT | Gini | Gini impurity | 0.574 | 0.689 | 0.719 | 0.719 | Entropy | Information gain - entropy | 0.609 | 0.697 | 0.758 | 0.758 | Logistic | NCG | Newton -CG | 0.711 | 0.805 | 0.737 | 0.675 | LBFGS | Limited-memory Broyden-Fletcher-Goldfarb-Shanno | 0.711 | 0.805 | 0.737 | 0.675 | Lib | Liblinear | 0.714 | 0.803 | 0.789 | 0.729 | SAG | Stochastic average gradient descent | 0.711 | 0.805 | 0.737 | 0.675 | SAGA | Stochastic average gradient accelerated | 0.714 | 0.802 | 0.789 | 0.726 | KNN | Uniform | Uniform weights | 0.680 | 0.779 | 0.815 | 0.734 | Distance | Distance weights | 0.672 | 0.776 | 0.831 | 0.741 | ANN | GD_a | Gradient descent, identity | 0.732 | 0.807 | 0.809 | 0.743 | GD_b | Gradient descent, logistic | 0.713 | 0.802 | 0.803 | 0.737 | GD_c | Gradient descent, tanh | 0.734 | 0.805 | 0.81 | 0.742 | GD_d | Gradient descent, ReLU | 0.748 | 0.807 | 0.826 | 0.766 | SGD_a | Stochastic gradient descent, identity | 0.692 | 0.776 | 0.690 | 0.632 | SGD_b | Stochastic gradient descent, logistic | 0.681 | 0.752 | 0.614 | 0.535 | SGD_c | Stochastic gradient descent, tanh | 0.695 | 0.774 | 0.691 | 0.633 | SGD_d | Stochastic gradient descent, ReLU | 0.688 | 0.752 | 0.689 | 0.631 | LBFGS_a | Limited-memory BFGS, identity | 0.744 | 0.802 | 0.811 | 0.750 | LBFGS_b | Limited-memory BFGS, logistic | 0.641 | 0.687 | 0.820 | 0.755 | LBFGS_c | Limited-memory BFGS, tanh | 0.644 | 0.704 | 0.853 | 0.776 | LBFGS_d | Limited-memory BFGS, ReLU | 0.707 | 0.776 | 0.838 | 0.754 | GB | GB1 | Friedman MSE, sqrt, deviance | 0.741 | 0.812 | 0.887 | 0.823 | GB2 | Friedman MSE, log, deviance | 0.753 | 0.810 | 0.890 | 0.820 | GB3 | Friedman MSE, deviance | 0.746 | 0.802 | 0.887 | 0.825 | GB4 | Friedman MSE, sqrt, AdaBoost | 0.771 | 0.815 | 0.888 | 0.818 | GB5 | Friedman MSE, log, AdaBoost | 0.750 | 0.810 | 0.894 | 0.821 | GB6 | Friedman MSE, AdaBoost | 0.756 | 0.810 | 0.887 | 0.820 | GB7 | MSE, sqrt, deviance | 0.745 | 0.807 | 0.89 | 0.821 | GB8 | MSE, log, deviance | 0.743 | 0.810 | 0.886 | 0.814 | GB9 | MSE, deviance | 0.740 | 0.803 | 0.887 | 0.824 | GB10 | MSE, sqrt, AdaBoost | 0.752 | 0.809 | 0.889 | 0.808 | GB11 | MSE, log, AdaBoost | 0.745 | 0.812 | 0.89 | 0.818 | GB12 | MSE, AdaBoost | 0.755 | 0.812 | 0.887 | 0.820 |
|
|