Research Article

Deep Learning Combined with Radiologist’s Intervention Achieves Accurate Segmentation of Hepatocellular Carcinoma in Dual-Phase Magnetic Resonance Images

Table 2

Comparisons of segmentation performance between DFN-R and previous studies.

StudiesAlgorithmImagesAverage DSCPatient numberJournal

Linguraru [8]SVMCT0.74101IEEE TMI, 2012
Foruzan [9]SVMCT0.8235IJCARS, 2016
Li [12]CNNCT0.8030JCC, 2017
Li [13]CNNCT0.74248J PERS MED, 2022
Christ [15]CFCNsDW-MRI0.6931MICCAI, 2016
Fabijańska [17]U-NetDCE-MRI0.489ICCVG, 2018
Khaled [18]DCNNT1-weighted MRI0.68174ABDOM RADIOL, 2020
Zheng [19]CNNDCE-MRI0.83190IEEE TMI, 2020
Current studyDFN-RHBP-MRI and PVP-MRI0.8351

Notes: MRI: magnetic resonance imaging; DCNN: deep convolutional neural networks; DFN: deep fusion network; SVM: support vector machine; CNN: convolutional neural networks; CFCNs: cascaded fully convolutional neural networks; DW-MRI: diffusion-weighted MRI; DCE-MRI: dynamic contrast-enhanced MRI.