Research Article
Cuckoo Search Algorithm Based on Repeat-Cycle Asymptotic Self-Learning and Self-Evolving Disturbance for Function Optimization
Table 3
Comparison of numerical testing results under different cycled disturbance number.
| Function | Cycle number | Best | Worst | Mean |
| | 5 | 1.0950e − 006 | 4.5927e − 004 | 8.4772e − 005 | 10 | 8.0914e − 008 | 3.9593e − 005 | 3.3471e − 006 | 20 | 8.1817e − 007 | 1.1113e − 004 | 2.4506e − 005 |
| | 5 | 15.5346 | 19.4028 | 18.2092 | 10 | 14.5140 | 19.4748 | 16.6741 | 20 | 14.9356 | 19.4993 | 16.6707 |
| | 5 | 2.0991e − 007 | 1.2703 | 0.1498 | 10 | 1.0955e − 008 | 0.3909 | 0.0847 | 20 | 3.1836e − 008 | 1.3680 | 0.0847 |
| | 5 | 5.9698 | 16.9143 | 12.4617 | 10 | 1.9899 | 14.9247 | 11.2695 | 20 | 1.9900 | 17.9210 | 11.7947 |
| | 5 | 1.5066e − 007 | 1.3715e − 004 | 5.1063e − 005 | 10 | 5.5967e − 008 | 0.0052 | 3.6228e − 005 | 20 | 3.2597e − 007 | 0.0022 | 2.9710e − 004 |
| | 5 | − 17.3839 | − 11.9059 | − 15.1020 | 10 | − 18.2436 | − 12.5260 | − 15.5739 | 20 | − 18.0307 | − 13.0349 | − 15.5256 |
|
|