Research Article

LogDet Rank Minimization with Application to Subspace Clustering

Algorithm 1

LogDet Rank Minimization.
Input: data matrix , parameters , , and .
Initialize:  , .
Repeat
(1) Update as:
   .
(2) Solve using (11) and (23).
(3) Update the augmented multiplier and the augmented Lagrange multiplier :
   ,
   .
Until stopping criterion is satisfied.
Return  .