Research Article
LogDet Rank Minimization with Application to Subspace Clustering
Algorithm 1
LogDet Rank Minimization.
| Input: data matrix , parameters , , and . | | Initialize: , . | | Repeat | | (1) Update as: | | . | | (2) Solve using (11) and (23). | | (3) Update the augmented multiplier and the augmented Lagrange multiplier : | | , | | . | | Until stopping criterion is satisfied. | | Return . |
|