Research Article
LogDet Rank Minimization with Application to Subspace Clustering
Algorithm 1
LogDet Rank Minimization.
Input: data matrix , parameters , , and . | Initialize: , . | Repeat | (1) Update as: | . | (2) Solve using (11) and (23). | (3) Update the augmented multiplier and the augmented Lagrange multiplier : | , | . | Until stopping criterion is satisfied. | Return . |
|