Research Article
A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)
Table 3
System performance comparison between this study and other studies mentioned in the literature.
| Study | System | DOF | Method | MSE | Hidden layers | Errors |
| Proposed | Denso | 6 | ANN | | 10 | % % % |
| Luv et al., 2014 [10] | PUMA 560 | 6 | ANN | 1.217 | 30 | % % % |
| Hasan et al., 2010 [2] | FANUC M-710i robot | 6 | ANN | ~1 | 1 | % % % |
| Toshani and Farrokhi, 2014 [4] | Simulation PA-10 robot | 7 | NNs with optimization | 1 | — | End effector 5 mm |
| Duka, 2014 [11] | Planar simulation | 3 | NNT | 0.0054 | 1 | — |
| Köker, 2013 [3] | Stanford | 6 | ANN | 2.38 | 25 | End effector 4.28 mm |
| Nanda et al., 2012 [5] | Simulation | 3 | ANN, FLANN | >1 | 20 | — |
| Daya et al., 2010 [6] | simulation | 2 | NNT | | 2 | — |
|
|