Research Article

Social Touch Gesture Recognition Using Convolutional Neural Network

Table 4

Comparison of features from other existing classification methods applied on same dataset.

No.ReferenceFeatures extracted# Subject# Touch# FeaturesClassify methodAccuracy (%)S.D. (%)

1[8]Yes311428Bayesian classifier5311
SVM469
2[9]Yes311428Bayesian classifier5412
SVM5311
3[10]Yes311445Neural network5415
4[11]Yes311442Random forests (RF)55.613
5[12]Yes31145 setRandom forests (RF)59
Boosting58
6[13]Yes31147Deep autoencoders56
7[15]Yes3114273SVM60.5
Random forests (RF)60.8
8[17]Yes311454Bayesian classifier5711
Decision tree algorithm4810
SVM6011
Neural network5912
9[24]No3114Raw data 8×8×45CNN42.34
Raw data 8×8×45CNN-RNN52.86
7Deep autoencoders33.52
10Our proposed methodNo3114Input data (raw data) 8×8×85Convolutional neural network63.711.85