Research Article
Social Touch Gesture Recognition Using Convolutional Neural Network
Table 4
Comparison of features from other existing classification methods applied on same dataset.
| No. | Reference | Features extracted | # Subject | # Touch | # Features | Classify method | Accuracy (%) | S.D. (%) |
| 1 | [8] | Yes | 31 | 14 | 28 | Bayesian classifier | 53 | 11 | SVM | 46 | 9 | 2 | [9] | Yes | 31 | 14 | 28 | Bayesian classifier | 54 | 12 | SVM | 53 | 11 | 3 | [10] | Yes | 31 | 14 | 45 | Neural network | 54 | 15 | 4 | [11] | Yes | 31 | 14 | 42 | Random forests (RF) | 55.6 | 13 | 5 | [12] | Yes | 31 | 14 | 5 set | Random forests (RF) | 59 | | Boosting | 58 | | 6 | [13] | Yes | 31 | 14 | 7 | Deep autoencoders | 56 | | 7 | [15] | Yes | 31 | 14 | 273 | SVM | 60.5 | | Random forests (RF) | 60.8 | | 8 | [17] | Yes | 31 | 14 | 54 | Bayesian classifier | 57 | 11 | Decision tree algorithm | 48 | 10 | SVM | 60 | 11 | Neural network | 59 | 12 | 9 | [24] | No | 31 | 14 | Raw data 8×8×45 | CNN | 42.34 | | Raw data 8×8×45 | CNN-RNN | 52.86 | | 7 | Deep autoencoders | 33.52 | | 10 | Our proposed method | No | 31 | 14 | Input data (raw data) 8×8×85 | Convolutional neural network | 63.7 | 11.85 |
|
|