Research Article
An Improved Kernel Credal Classification Algorithm Based on Regularized Mahalanobis Distance: Application to Microarray Data Analysis
Algorithm 1
Mahalanobis kernel credal classification rule (MKCCR).
| Input | | X: Dataset | | c: Clusters Number | | β: The Tuning Parameter | | γ: The Tuning Parameter for objects in Meta-cluster | | h: Hyper Parameter of the Gaussian Kernel | | : Regularization Parameter (τ=0.01) | | Initialization | | Choose initial cluster centers from the objects | | Calculate the distance between data and centers using equation (23) | | Construct the bba’s using equations (13), (14) and (16) |
|