Research Article
A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification
Table 1
Classification performance of the proposed method on the UC-Merced dataset using different feature extractors and fusion strategies.
| Different architectures | Feature size | Training ratios | 50% | 80% |
| Without fusion (CaffeNet(RGB)) | 4096 | 94.60 0.63 | 95.69 0.91 | Without fusion (CaffeNet(saliency)) | 4096 | 92.62 0.74 | 94.04 0.88 | Without fusion (VGG-Net-16(RGB)) | 4096 | 94.77 0.73 | 95.91 1.41 | Without fusion (VGG-Net-16(saliency)) | 4096 | 92.82 0.91 | 94.31 0.99 | Without fusion (GoogLeNet(RGB)) | 1024 | 93.31 0.71 | 94.99 0.78 | Without fusion (GoogLeNet(saliency)) | 1024 | 91.32 0.98 | 93.30 0.55 | Fusion strategy 1 (CaffeNet) | 8192 | 95.79 0.52 | 96.83 0.91 | Fusion strategy 2 (CaffeNet) | 4096 | 96.74 0.49 | 97.80 0.88 | Fusion strategy 1 (VGG-Net-16) | 8192 | 96.02 0.77 | 97.05 1.00 | Fusion strategy 2 (VGG-Net-16) | 4096 | 96.97 0.75 | 98.02 1.03 | Fusion strategy 1 (GoogLeNet) | 2048 | 94.46 0.60 | 96.17 0.90 | Fusion strategy 2 (GoogLeNet) | 1024 | 95.41 0.58 | 97.12 0.96 |
|
|