Research Article

A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification

Table 1

Classification performance of the proposed method on the UC-Merced dataset using different feature extractors and fusion strategies.

Different architecturesFeature sizeTraining ratios
50%80%

Without fusion (CaffeNet(RGB))409694.60 0.6395.69 0.91
Without fusion (CaffeNet(saliency))409692.62 0.7494.04 0.88
Without fusion (VGG-Net-16(RGB))409694.77 0.7395.91 1.41
Without fusion (VGG-Net-16(saliency))409692.82 0.9194.31 0.99
Without fusion (GoogLeNet(RGB))102493.31 0.7194.99 0.78
Without fusion (GoogLeNet(saliency))102491.32 0.9893.30 0.55
Fusion strategy 1 (CaffeNet)819295.79 0.5296.83 0.91
Fusion strategy 2 (CaffeNet)409696.74 0.4997.80 0.88
Fusion strategy 1 (VGG-Net-16)819296.02 0.7797.05 1.00
Fusion strategy 2 (VGG-Net-16)409696.97 0.7598.02 1.03
Fusion strategy 1 (GoogLeNet)204894.46 0.6096.17 0.90
Fusion strategy 2 (GoogLeNet)102495.41 0.5897.12 0.96