Research Article

A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification

Table 2

Comparison with the state-of-the-art methods on the UC-Merced dataset.

MethodsTraining ratios
50%80%

SCK [31]-72.52
SPCK [32]-73.14
BoVW [33]-76.81
BoVW + SCK [31]-77.71
BRSP [34]-77.80
SIFT + SC [35]-81.67 1.23
SSEA [36]-82.72 1.18
MCMI [37]-88.20
OverFeat [38]-90.91 1.19
VLAD [39]-92.50
VLAT [39]-94.30
MS-CLBP + FV [40]88.76 0.7993.00 1.20
CaffeNet [41]93.98 0.6795.02 0.81
GoogLeNet [41]92.70 0.6094.31 0.89
VGG-VD-16 [41]94.14 0.6995.21 1.20
CNN-ELM [27]-95.62
salM3LBP-CLM [42]94.21 0.7595.75 0.80
TEX-Net-LF [43]95.89 0.3796.62 0.49
Fusion by addition [44]-97.42 1.79
Ours96.97 0.7598.02 1.03