Research Article
A Two-Stream Deep Fusion Framework for High-Resolution Aerial Scene Classification
Table 8
Comparison with the state-of-the-art methods on the NWPU-RESISC45 dataset.
| Methods | Training ratios | 10% | 20% |
| GIST [46] | 15.90 ± 0.23 | 17.88 ± 0.22 | LBP [46] | 19.20 ± 0.41 | 21.74 ± 0.18 | Color histograms [46] | 24.84 ± 0.22 | 27.52 ± 0.14 | BoVW + SPM [46] | 27.83 ± 0.61 | 32.96 ± 0.47 | LLC [46] | 38.81 ± 0.23 | 40.03 ± 0.34 | BoVW [46] | 41.72 ± 0.21 | 44.97 ± 0.28 | GoogLeNet [46] | 76.19 ± 0.38 | 78.48 ± 0.26 | VGGNet-16 [46] | 76.47 ± 0.18 | 79.79 ± 0.15 | AlexNet [46] | 76.69 ± 0.21 | 79.85 ± 0.13 | Ours | 80.22 ± 0.22 | 83.16 ± 0.18 |
|
|