Research Article

Automated Text Analysis Based on Skip-Gram Model for Food Evaluation in Predicting Consumer Acceptance

Algorithm 1

Algorithm for taste and smell analysis.
Algorithm. Find_Taste_and_Smell(Keyword, Corpus, n)
Input: String Keyword and List Corpus of n integers
// keyword is “Mat (Taste)” or “Hyang (Smell)”
Output: List Result of most similar words in Corpus
// Corpus is have to be jjampong ramen A corpus or jjampong ramen corpus B
Method:
  begin
    Result an empty List
    vector wor2vec(keyword) // represent input string A as a vector by skip-gram model
    for 0 to
      word_vector word2vec(Corpus[])
      similarity cosine_similarity(vector, word_vector) //compute similarity
      Result.insertElem(word, similarity)
    end
    sorted(Result) // sort descending by similarity and store only top 20 words
    filtering(Result) // remove noise words
    return Result
  end