Research Article
Automated Text Analysis Based on Skip-Gram Model for Food Evaluation in Predicting Consumer Acceptance
Algorithm 1
Algorithm for taste and smell analysis.
| Algorithm. Find_Taste_and_Smell(Keyword, Corpus, n) | | Input: String Keyword and List Corpus of n integers | | // keyword is “Mat (Taste)” or “Hyang (Smell)” | | Output: List Result of most similar words in Corpus | | // Corpus is have to be jjampong ramen A corpus or jjampong ramen corpus B | | Method: | | begin | | Result ← an empty List | | vector ← wor2vec(keyword) // represent input string A as a vector by skip-gram model | | for ← 0 to | | word_vector ← word2vec(Corpus[]) | | similarity ← cosine_similarity(vector, word_vector) //compute similarity | | Result.insertElem(word, similarity) | | end | | sorted(Result) // sort descending by similarity and store only top 20 words | | filtering(Result) // remove noise words | | return Result | | end |
|