Research Article

A Hybrid Ensemble Model Based on ELM and Improved AdaBoost.RT Algorithm for Predicting the Iron Ore Sintering Characters

Table 1

Descriptive statistics of the variables.

VariablesDescriptionUnitMinimumMaximumAverageStandard deviation

Limestone%0.7453.982.4290.598
Dolomite%3.0745.3814.2080.434
Quick lime%4.7955.8935.1750.292
Internal return fines%16.33622.62318.9061.091
Basicity1.691.971.8320.055
Moisture rate%7.2478.9268.0170.348
Bed heightmm653.444816.063768.69135.457
Bed permeability33.93556.95745.2763.575
Strand speedm/min2.5283.362.9320.15
Ignition density1.5342.2551.8240.141
Ignition air-fuel ratio4.986.3215.1240.182
Insulation furnace temperature488.428973.015729.905111.987
Preheating air temperature229.296328.856294.2414.022
Exhaust fan negative pressurekPa12.61619.48316.8861.141
TFe%57.5658.70258.230.222
FeO%7.37610.4988.8060.573
CaO%8.469.619.0640.217
MgO%1.2581.781.4830.1
%4.5455.2824.9520.122
%1.5881.831.7240.046
Solid fuel consumptionkg40.96353.97147.2232.304
Gas fuel consumption1.8882.8952.2740.169
Burning through point24.45927.92426.5880.542
Tumbler index%74.284.178.4241.5