Research Article

A Modified Dragonfly Optimization Algorithm for Single- and Multiobjective Problems Using Brownian Motion

Table 3

Comparative results of the single-objective benchmark functions.

Benchmark functionsPerformance resultsPercentage of success rate
LFMSSCBMBrownian motionSSCBMBrownian motion

F1 (min.)5.56E − 064.89E − 072.29E − 0691.2058.72
F1 (avg.)4.59E + 005.03E + 004.93E + 00−9.71−7.52
F2 (min.)1.29E − 027.24E − 031.80E − 0343.9986.05
F2 (avg.)1.46E + 001.26E + 008.68E − 0113.5940.69
F3 (min.)8.39E − 023.03E − 021.02E − 0163.88−21.02
F3 (avg.)1.38E + 021.63E + 028.40E + 01−17.4239.30
F4 (min.)3.45E − 022.63E − 023.02E − 0223.8412.35
F4 (avg.)1.91E + 002.08E + 001.78E + 00−8.876.58
F5 (min.)5.56E + 004.03E + 005.44E + 0027.532.16
F5 (avg.)1.74E + 031.45E + 035.74E + 0216.9767.06
F6 (min.)4.10E − 073.04E − 091.65E − 0799.2659.69
F6 (avg.)5.49E + 004.30E + 005.58E + 0021.55−1.65
F7 (min.)1.41E − 031.01E − 031.09E − 0328.4823.27
F7 (avg.)1.95E − 012.18E − 022.22E − 0288.8088.62
F8 (min.)−3.89E + 03−3.94E + 03−3.92E + 031.260.63
F8 (avg.)−2.82E + 03−2.84E + 03−2.93E + 031.054.22
F9 (min.)2.99E + 002.61E + 002.46E + 0012.8317.89
F9 (avg.)3.06E + 012.44E + 012.47E + 0120.3919.47
F10 (min.)4.44E − 158.88E − 168.88E − 1680.0080.00
F10 (avg.)2.28E + 002.26E + 002.32E + 000.63−1.79
F11 (min.)3.94E − 038.59E − 074.10E − 0399.98−4.07
F11 (avg.)4.70E − 014.38E − 014.34E − 016.817.71
F12 (min.)1.63E − 043.07E − 042.85E − 04−88.69−75.08
F12 (avg.)1.29E + 001.20E + 001.29E + 007.110.50
F13 (min.)6.70E − 054.23E − 053.08E − 0536.8054.05
F13 (avg.)8.35E − 016.90E − 016.71E − 0117.3819.72
F14 (min.)9.98E − 019.98E − 019.98E − 010.000.00
F14 (avg.)1.25E + 001.23E + 001.20E + 001.973.97
F15 (min.)3.41E − 043.08E − 043.13E − 049.838.09
F15 (avg.)2.45E − 032.12E − 032.04E − 0313.4516.70

Note: min. = minimum; avg. = average.