Facing High EEG Signals Variability during Classification Using Fractal Dimension and Different Cutoff Frequencies
Table 1
Average accuracy for Condition A using the classical filter configuration (1–100 Hz).
Subject
Higuchi
Katz
AR
A1
0.65 ± 0.04
0.58 ± 0.03
0.61 ± 0.04
A2
0.49 ± 0.05
0.51 ± 0.02
0.52 ± 0.03
A3
0.78 ± 0.03
0.51 ± 0.05
0.65 ± 0.04
A4
0.45 ± 0.04
0.47 ± 0.03
0.48 ± 0.04
A5
0.54 ± 0.05
0.51 ± 0.03
0.51 ± 0.03
A6
0.54 ± 0.04
0.55 ± 0.03
0.53 ± 0.05
A7
0.53 ± 0.04
0.55 ± 0.04
0.55 ± 0.04
A8
0.85 ± 0.03
0.66 ± 0.04
0.78 ± 0.04
A9
0.65 ± 0.05
0.78 ± 0.07
0.69 ± 0.06
Average
0.61 ± 0.04
0.57 ± 0.04
0.59 ± 0.04
Accuracies that are significantly different compared with the best result. Values in bold indicate the best average accuracy achieved from the different feature extraction techniques.