Research Article

A Novel Low-Bit Quantization Strategy for Compressing Deep Neural Networks

Table 5

Sparsity of ResNet-18 on CIFAR10.

Layers (weight tensors)Full precision (1 − sparsity) (%)Our method (1 − sparsity) (%)

Conv1 (64, 3, 3, 3)100100
Conv2 (64, 64, 3, 3)10085.32
Conv3 (64, 64, 3, 3)10086.71
Conv4 (64, 64, 3, 3)10085.84
Conv5 (64, 64, 3, 3)10085.10
Conv6 (128, 64, 3, 3)10086.04
Conv7 (128, 128, 3, 3)10083.46
Conv8 (128, 64, 1, 1)10086.52
Conv9 (128, 128, 3, 3)10082.88
Conv10 (128, 128, 3, 3)10080.75
Conv11 (256, 128, 3, 3)10077.45
Conv12 (256, 256, 3, 3)10070.23
Conv13 (256, 128, 1, 1)10077.74
Conv14 (256, 256, 3, 3)10059.51
Conv15 (256, 256, 3, 3)10042.64
Conv16 (512, 256, 3, 3)10022.16
Conv17 (512, 512, 3, 3)10010.72
Conv18 (512, 256, 1, 1)10041.56
Conv19 (512, 512, 3, 3)1005.02
Conv20 (512, 512, 3, 3)1003.46
1 − Sparsity10023.32
Accuracy93.7492.52