Research Article

An Adaptive Shrinking Grid Search Chaotic Wolf Optimization Algorithm Using Standard Deviation Updating Amount

Table 2

Test functions [25].

OrderFunctionExpressionDimensionRangeOptimum

1MatyasF1 = 0.26 × ( + ) − 0.48 × x1 × x22[−10, 10]min f = 0
2EasomF2 = −cos (x1) × cos (x2) × exp[− (x1 − π)2 − (x2 − π)2]2[−100, 100]min f = −1
3SumsquaresF3 = 10[−1.5, 1.5]min f = 0
4SphereF4 = 30[−1.5, 1.5]min f = 0
5EggcrateF5 =  +  + 25 × (sin2x1 + sin2x2)2[−π, π]min f = 0
6Six hump camel backF6 = 4 × x1 − 2.1 + (1/3) ×  + x1 × x2 − 4 ×  + 4 × 2[−5, 5]min f = −1.0316
7Bohachevsky3F7 =  + 2 ×  − 0.3 × cos (3πx1 + 4πx2) + 0.32[−100, 100]min f = 0
8BridgeF8 =  − 0.71292[−1.5, 1.5]max f = 3.0054
9BoothF9 = (x1 + 2 × x2 − 7)2 + (2 × x1 + x2 − 5)22[−10, 10]min f = 0
10Bohachevsky1F10 =  + 2  − 0.3 × cos (3πx1) − 0.4 × cos (4πx2) + 0.72[−100, 100]min f = 0
11AckleyF11 = −20 × exp (−0.2 ×) − exp () + 20 + e6[−1.5, 1.5]min f = 0
12QuadricF12 = 10[−1.5, 1.5]min f = 0