Research Article

An Initial Alignment Technology of Shearer Inertial Navigation Positioning Based on a Fruit Fly-Optimized Kalman Filter Algorithm

Algorithm 1

Inputs: sizepop, maxgen, d, fmin, fmax. etc.
Outputs: X
% Initialization
Set the parameters of the improved Kalman filter algorithm: population size sizepop, maximum iteration number maxgen, dimension d, frequency variables fmin and fmax, etc.
% Obtain the current population optimal concentration
For i = 1, 2, …, sizepop
Kalman (S(i))
% Obtain smell concentration
Smell (i) = MSE (Kalman (S(i)))
End
% Obtain the best individual concentration
Sbest, X ⟵ 
% Obtain the optimal system noise covariance
Q ⟵ Sbest
% Iterative optimization
For  = 1: maxgen
For i = 1, 2, ..., sizepop
If Number of optimum values not updated >2.
Else
End
Kalman (S(i))
% Obtain smell concentration
Smell(i) = MSE (Kalman (S(i)))
End
% Obtain the best individual concentration
 Sbest, X ⟵ 
% Obtain the optimal system noise covariance
Q ⟵ Sbest
End