Research Article

Prediction of Flight Time Deviation for Lithuanian Airports Using Supervised Machine Learning Model

Table 3

The arrival flight estimation results (expressed as a percentage).

AlgorithmDatasetMeasures (%)
Sensitivity/recallPrecisionSpecificityF measureAccuracy

Probabilistic neural networkTesting78.8776.6390.2877.2376.63
New data36.5633.2174.1734.5533.54
Multilayer perceptronTesting56.7347.4373.0150.7747.43
New data39.4532.1566.8735.1731.78
Decision treesTesting66.5663.1185.7864.4263.11
New data61.1257.8483.5559.1257.83
Random forestTesting81.2777.4089.8278.4077.40
New data64.2058.8282.7760.4158.97
Tree ensembleTesting81.0078.3390.9379.0478.33
New data69.7266.1586.4767.1466.19
Gradient boosted treesTesting89.4588.5996.0088.8588.59
New data81.9880.7593.2881.0980.90
Support vector machineTesting91.9832.706.4746.4132.70
New data96.4232.014.2647.5032.73