Research Article

Prediction of Flight Time Deviation for Lithuanian Airports Using Supervised Machine Learning Model

Table 4

Departure flights’ estimation results (expressed as a percentage).

AlgorithmsDatasetMeasures (%)
Sensitivity/recallPrecisionSpecificityF measureAccuracy

Probabilistic neural networkTesting96.4686.2726.8490.1486.27
New data94.0080.7710.3886.6682.01
Multilayer perceptronTesting90.9085.6548.1587.8685.65
New data88.0480.7633.5284.0781.80
Decision treesTesting91.7889.8771.4790.6589.87
New data89.3587.6869.6388.3787.54
Random forestTesting94.9491.7265.6692.8291.72
New data89.9784.6846.5186.6085.48
Tree ensembleTesting94.6893.2576.9693.7493.25
New data90.0288.4870.7289.1188.53
Gradient boosted treesTesting96.6296.0287.3396.2296.02
New data93.3592.0679.1892.5292.63
Support vector machineTesting99.8682.880.7090.5382.88
New data99.8283.042.1790.6383.07