Research Article
A Compressive Sensing Model for Speeding Up Text Classification
Table 3
Accuracies of different classifiers driven by BOW and CS features on binary and multiclass classification datasets when SRM is Block DCT.
| Classifier | BOW feature | Subrate R for CS feature | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
| Binary classification | SVM | 0.7220 | 0.6975 | 0.7135 | 0.7285 | 0.7265 | 0.7290 | 0.7265 | Decision tree | 0.6235 | 0.6365 | 0.6395 | 0.6460 | 0.6355 | 0.6465 | 0.6485 | AdaBoost | 0.7060 | 0.7020 | 0.6975 | 0.7075 | 0.7035 | 0.7020 | 0.7110 | KNN | 0.6040 | 0.5955 | 0.6120 | 0.6200 | 0.6140 | 0.6145 | 0.6125 | Naïve Bayes | 0.7275 | 0.7035 | 0.7130 | 0.7125 | 0.7170 | 0.7200 | 0.7150 | Avg. | 0.6766 | 0.6670 | 0.6751 | 0.6829 | 0.6793 | 0.6824 | 0.6827 |
| Multiclass classification | SVM | 0.8732 | 0.8358 | 0.8651 | 0.8666 | 0.8712 | 0.8767 | 0.8803 | Decision tree | 0.8560 | 0.8454 | 0.8434 | 0.8510 | 0.8520 | 0.8525 | 0.8530 | AdaBoost | 0.7777 | 0.7535 | 0.7737 | 0.7732 | 0.7813 | 0.7808 | 0.7818 | KNN | 0.8252 | 0.8080 | 0.8146 | 0.8207 | 0.8242 | 0.8257 | 0.8252 | Naïve Bayes | 0.7737 | 0.7373 | 0.7404 | 0.7464 | 0.7429 | 0.7424 | 0.7454 | Avg. | 0.8212 | 0.7960 | 0.8074 | 0.8116 | 0.8143 | 0.8156 | 0.8171 |
|
|