Research Article
Classification of Lung Nodules Based on Deep Residual Networks and Migration Learning
Table 3
Parameter configuration of the deep residual network, VGG19 model, and InceptionV3 model.
| Deep residual network | VGG19 | InceptionV3 | Input: nodule/nonnodule images |
| conv1 7 7, 64 | 2 conv3-64 | conv3-32 | conv3-32 | conv3-64 | max pool | max pool | max pool | conv2_x | 2 conv3-128 | conv1-80 | conv3-192 | max pool | max pool | conv3_x | 4 conv3-256 | block1 | module1 concat | module2 concat | max pool | module3 concat | conv4_x | 4 conv3-512 | block2 | module1 concat | module2 concat | module3 concat | module4 concat | max pool | module5 concat | conv5_x | 4 conv3-512 | block3 | module1 concat | module2 concat | max pool | module3 concat | Global average pooling2D | Fully connected layer-1024 | Fully connected layer-2 | Output: sigmoid |
|
|