Research Article
Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme
Table 5
RMSE comparison with the literature on the C-MAPSS dataset.
| DL approach and references | FD001 | FD002 | FD003 | FD004 |
| CNN + FNN [23] | 18.45 | 30.29 | 19.82 | 29.16 | MODBNE [28] | 15.04 | 25.05 | 12.51 | 28.66 | LSTM + FNN [20] | 16.14 | 24.49 | 16.18 | 28.17 | CNN + FNN [8] | 12.61 | 22.36 | 12.64 | 23.31 | BiLSTM-ED [27] | 14.74 | 22.07 | 17.48 | 23.49 | RBM + LSTM [24] | 12.56 | 22.73 | 12.10 | 22.66 | Proposed architecture | 10.71 | 19.49 | 11.48 | 19.71 |
|
|