Research Article
Classical and Bayesian Inference of Conditional Stress-Strength Model under Kumaraswamy Distribution
Table 1
Classical estimation:
, , and
for equal sample sizes
n and
m.
| (m, n) | | Bias () | MSE () | C.I | CP | Length |
| (5, 5) | 0.4842 | 0.0033 | 0.0320 | (0.2225, 0.7459) | 0.8000 | 0.5235 | (10, 10) | 0.5135 | 0.0307 | 0.0097 | (0.3040, 0.7228) | 0.9500 | 0.4188 | (15, 15) | 0.4833 | 0.0005 | 0.0082 | (0.3115, 0.6549) | 0.9487 | 0.3433 | (20, 20) | 0.4754 | −0.0068 | 0.0050 | (0.3248, 0.6259) | 0.9600 | 0.3012 | (35, 35) | 0.4778 | −0.0032 | 0.0028 | (0.3625,0.5930) | 0.9630 | 0.2305 | (50, 50) | 0.4809 | 0.0000 | 0.0030 | (0.3846, 0.5772) | 0.9300 | 0.1927 | (70, 70) | 0.48589 | 0.00493 | 0.00178 | (0.4038, 0.5679) | 0.93000 | 0.16402 | (100, 100) | 0.4786 | −0.0023 | 0.0010 | (0.4098, 0.5474) | 0.9700 | 0.1376 |
|
|