Research Article

Deep-Stacking Network Approach by Multisource Data Mining for Hazardous Risk Identification in IoT-Based Intelligent Food Management Systems

Table 1

Attributive categories of the grain database.

Attributive nameValue

ProvinceAnhui | Beijing | Chongqing | Fujian | Guangdong | Guangxi | Guizhou | Hainan | Hebei | Heilongjiang | Henan | Hubei | Hunan | Jiangsu | Jiangxi | Jilin | Liaoning | Qinghai | Shaanxi | Shandong | Shanghai | Shanxi | Sichuan | Tianjin | Yunnan | Zhejiang
Grain typeRice | wheat | corn | roughage| rice-processed products | wheat-processed products | else
LinkProduction | circulation | sale
Production areaCity | village
Sampling sitesPlanting bases | warehouse | workshop| transportation facility | farmer markets | supermarkets |restaurants | hotel| laboratories|
Hazard typeAFB1| OTA| ZON| DON| T2| fumonisin| Al | As| Cd| Cr| Hg| Pb | COLI | Salmonella| MRSA| tebuconazole| benzopyrene (BaP) | malathion|
Risk itemHeavy metals| microorganisms| mycotoxins| pesticide residues|
Content and unitmg/kg | μg/kg | CFU/g | MPN/g
Temperature−10°C–40°C
Humidity0%–100%
Light exposure0 Lux–1500 Lux
Oxygen17%–25%
Carbon dioxide0 ppm–1200 ppm
Weight0 kg–100 kg
Expiration date3–24 months
Production data2015.01–2019.07
Risk levelI | II | III | IV | V | VI | VII | VIII