Research Article
Multipath Cross Graph Convolution for Knowledge Representation Learning
Table 3
Comparison of the overall effect of multiple baseline models on different datasets.
| Dataset | YAGO43kET | WN18RR | FB15kET | Metrics | MRR | H_@1 | H_@3 | H_@10 | MRR | H_@1 | H_@3 | H_@10 | MRR | H_@1 | H_@3 | H_@10 |
| Methods | TransE | 0.21 | 12.63 | 23.24 | 38.93 | 0.14 | 8.14 | 13.27 | 19.56 | 0.45 | 31.51 | 51.45 | 73.93 | TransE-ET | 0.18 | 9.19 | 19.41 | 35.58 | 0.16 | 8.32 | 14.31 | 21.22 | 0.46 | 33.56 | 52.96 | 71.16 | TransR | 0.19 | 10.23 | 19.97 | 36.75 | 0.16 | 8.44 | 17.92 | 26.71 | 0.47 | 34.63 | 53.67 | 72.02 | ETE | 0.23 | 13.73 | 26.28 | 42.18 | 0.18 | 9.12 | 18.21 | 27.13 | 0.50 | 38.51 | 55.33 | 72.93 | PTransE | 0.24 | 13.74 | 26.36 | 42.33 | 0.20 | 10.38 | 20.32 | 29.33 | 0.53 | 39.87 | 56.47 | 73.51 | ConnectE-(E2T+0) | 0.25 | 13.66 | 26.38 | 44.60 | 0.21 | 11.71 | 23.31 | 30.74 | 0.57 | 45.82 | 62.60 | 80.01 | ConnectE-(E2T + TRT) | 0.29 | 16.13 | 30.98 | 47.99 | 0.23 | 12.17 | 23.79 | 31.03 | 0.59 | 49.611 | 64.69 | 80.03 | TransC-GCN _AdaGrad | 0.29 ± .32 | 17.12 ± .03 | 31.33 ± .21 | 48.72 ± .02 | 0.23 ± .21 | 13.76 ± .01 | 28.35 ± .13 | 33.07 ± .08 | 0.61 ± .03 | 49.47 ± .76 | 65.25 ± .44 | 81.02 ± .41 | TransC-GCN _SGD | 0.29 ± .26 | 17.06 ± .17 | 30.95 ± .36 | 48.98 ± .00 | 0.24 ± .32 | 13.98 ± .36 | 29.18 ± .27 | 43.53 ± .03 | 0.61 ± .37 | 49.53 ± .40 | 65.39 ± .68 | 81.33 ± .32 |
|
|