Research Article

Multipath Cross Graph Convolution for Knowledge Representation Learning

Table 3

Comparison of the overall effect of multiple baseline models on different datasets.

DatasetYAGO43kETWN18RRFB15kET
MetricsMRRH_@1H_@3H_@10MRRH_@1H_@3H_@10MRRH_@1H_@3H_@10

MethodsTransE0.2112.6323.2438.930.148.1413.2719.560.4531.5151.4573.93
TransE-ET0.189.1919.4135.580.168.3214.3121.220.4633.5652.9671.16
TransR0.1910.2319.9736.750.168.4417.9226.710.4734.6353.6772.02
ETE0.2313.7326.2842.180.189.1218.2127.130.5038.5155.3372.93
PTransE0.2413.7426.3642.330.2010.3820.3229.330.5339.8756.4773.51
ConnectE-(E2T+0)0.2513.6626.3844.600.2111.7123.3130.740.5745.8262.6080.01
ConnectE-(E2T + TRT)0.2916.1330.9847.990.2312.1723.7931.030.5949.61164.6980.03
TransC-GCN _AdaGrad0.29 ± .3217.12 ± .0331.33 ± .2148.72 ± .020.23 ± .2113.76 ± .0128.35 ± .1333.07 ± .080.61 ± .0349.47 ± .7665.25 ± .4481.02 ± .41
TransC-GCN _SGD0.29 ± .2617.06 ± .1730.95 ± .3648.98 ± .000.24 ± .3213.98 ± .3629.18 ± .2743.53 ± .030.61 ± .3749.53 ± .4065.39 ± .6881.33 ± .32